PUBLICATIONS

2023

2022

Abstract:

{Probing and controlling the valley degree of freedom in graphene systems by transport measurements has been a major challenge to fully exploit the unique properties of this two-dimensional material. In this theoretical work, we show that this goal can be achieved by a quantum-wire geometry made of gapped graphene that acts as a valley filter with the following favorable features: (i) all electrical gate control, (ii) electrically switchable valley polarity, (iii) robustness against configuration fluctuation, and (iv) potential for room temperature operation. This valley filtering is accomplished by a combination of gap opening in either bilayer graphene with a vertical electrical field or single layer graphene on h-BN, valley splitting with a horizontal electric field, and intervalley mixing by defect scattering. In addition to functioning as a building block for valleytronics, the proposed configuration makes it possible to convert signals between electrical and valleytronic forms, thus allowing for the integration of electronic and valleytronic components for the realization of electro-valleytronics.}

Notes:

164303

2021

Abstract:

Abstract Band structure by design in 2D layered semiconductors is highly desirable, with the goal to acquire the electronic properties of interest through the engineering of chemical composition, structure, defect, stacking, or doping. For atomically thin transition metal dichalcogenides, substitutional doping with more than one single type of transition metals is the task for which no feasible approach is proposed. Here, the growth of WS2 monolayer is shown codoped with multiple kinds of transition metal impurities via chemical vapor deposition controlled in a diffusion-limited mode. Multielement embedment of Cr, Fe, Nb, and Mo into the host lattice is exemplified. Abundant impurity states thus generate in the bandgap of the resultant WS2 and provide a robust switch of charging/discharging states upon sweep of an electric filed. A profound memory window exists in the transfer curves of doped WS2 field-effect transistors, forming the basis of binary states for robust nonvolatile memory. The doping technique presented in this work brings one step closer to the rational design of 2D semiconductors with desired electronic properties.

Notes:

n/a

2020

2019

Abstract:

n/a

Notes:

PMID: 31244047

Abstract:

n/a

Notes:

PMID: 30790512

2018

Abstract:

n/a

Notes:

doi: 10.1021/acs.nanolett.8b02105

Abstract:

Two-dimensional (2D) topological insulators (TIs) are promising platforms for low-dissipation spintronic devices based on the quantum-spin-Hall (QSH) effect, but experimental realization of such systems with a large band gap suitable for room-temperature applications has proven difficult. Here, we report the successful growth on bilayer graphene of a quasi-freestanding WSe2 single layer with the 1T′ structure that does not exist in the bulk form of WSe2. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we observe a gap of 129 meV in the 1T′ layer and an in-gap edge state located near the layer boundary. The system′s 2D TI characters are confirmed by first-principles calculations. The observed gap diminishes with doping by Rb adsorption, ultimately leading to an insulator–semimetal transition. The discovery of this large-gap 2D TI with a tunable band gap opens up opportunities for developing advanced nanoscale systems and quantum devices.

Notes:

n/a

Abstract:

n/a

Notes:

doi: 10.1021/acs.nanolett.8b03417

Abstract:

n/a

Notes:

doi: 10.1021/acs.nanolett.8b03417

2017

Abstract:

Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe2, despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.

Notes:

n/a

Abstract:

n/a

Notes:

1703680

Abstract:

Here{,} by utilizing the special interaction between metal Cu and multi-walled carbon nanotubes (CNTs){,} we have successfully realized the in situ growth of Cu2Se on the surface of CNTs and then fabricated a series of Cu2Se/CNT hybrid materials. Due to the high degree of homogeneously dispersed molecular CNTs inside the Cu2Se matrix{,} a record-high thermoelectric figure of merit zT of 2.4 at 1000 K has been achieved.

Notes:

n/a

2016

2015

2014

2013

Abstract:

The low-lying energy spectra of bilayer graphene in a perpendicular magnetic field B(r)(z) over cap were obtained by numerical diagonalization of the Hamiltonian. We assumed that B(r) takes on the shape of a circular dot or a ring. Under such a nonuniform field, the lowest-energy Landau levels, with N- = 0,1, remain invariant with a zero eigenvalue. For other Landau levels, complicated level-splitting and level-crossings take place when the effective radius of the dot or ring increases. (C) 2012 Elsevier Ltd. All rights reserved.

Notes:

ISI Document Delivery No.: 098LWTimes Cited: 0Cited Reference Count: 23Cited References: Abergel DSL, 2010, ADV PHYS, V59, P261, DOI 10.1080/00018732.2010.487978 Barbier M, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.155402 Beenakker CWJ, 2008, REV MOD PHYS, V80, P1337, DOI 10.1103/RevModPhys.80.1337 Castro Neto AH, 2009, REV MOD PHYS, V81, P109, DOI 10.1103/RevModPhys.81.109 De Martino A, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.066802 De Martino A, 2010, SEMICOND SCI TECH, V25, DOI 10.1088/0268-1242/25/3/034006 De Martino A, 2007, SOLID STATE COMMUN, V144, P547, DOI 10.1016/j.ssc.2007.03.062 Goerbig MO, 2011, REV MOD PHYS, V83, P1193, DOI 10.1103/RevModPhys.83.1193 Kim N, 1999, PHYS REV B, V60, P8767, DOI 10.1103/PhysRevB.60.8767 Kormanyos A, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.045430 Lee CM, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3435478 Lee CM, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/35/355501 Lee SJ, 2004, PHYS REP, V394, P1, DOI 10.1016/j.physrep.2003.11.004 Masir MR, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.245413 McCann E., 2007, PHYS REV LETT, V96 Novoselov KS, 2005, NATURE, V438, P197, DOI 10.1038/nature04233 Novoselov KS, 2006, NAT PHYS, V2, P177, DOI 10.1038/nphys245 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Masir MR, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.155451 Masir MR, 2011, J PHYS-CONDENS MAT, V23, DOI 10.1088/0953-8984/23/31/315301 Sim HS, 1998, PHYS REV LETT, V80, P1501, DOI 10.1103/PhysRevLett.80.1501 Yang N, 2012, J PHYS-CONDENS MAT, V24, DOI 10.1088/0953-8984/24/21/215303 Zazunov A, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.155431Lee, C. M. Lee, Richard C. H. Ruan, W. Y. Chou, M. Y. Vyas, A.Chou, Mei-Yin/D-3898-2012U.S. Department of Energy [DE-FG02-97ER45632]This work is supported by the U.S. Department of Energy Grant No. DE-FG02-97ER45632.Pergamon-elsevier science ltdOxford 

Abstract:

Various surface passivations for silicon nanowires have previously been investigated to extend their stability and utility. However, the fundamental mechanisms by which such passivations alter the electronic properties of silicon nanowires have not been clearly understood thus far. In this work, we address this issue through first-principles calculations on fluorine, methyl and hydrogen passivated [110] and [111] silicon nanowires. Comparing these results, we explain how passivations may alter the electronic structure through quantum confinement and strain and demonstrate how silicon nanowires may be modelled by an infinite circular quantum well. We also discuss why [110] nanowires are more strongly influenced by their surface passivation than [111] nanowires.

Notes:

ISI Document Delivery No.: 107ISTimes Cited: 0Cited Reference Count: 33Cited References: Ashcroft N.W., 1975, SOLID STATE PHYS, VHarcourt College Bashouti MY, 2008, J PHYS CHEM C, V112, P19168, DOI 10.1021/jp8077437 Bashouti MY, 2009, SMALL, V5, P2761, DOI 10.1002/smll.200901402 Bashouti MY, 2009, PHYS CHEM CHEM PHYS, V11, P3845, DOI 10.1039/b820559k BLOCHL PE, 1994, PHYS REV B, V50, P17953, DOI 10.1103/PhysRevB.50.17953 Boukai AI, 2008, NATURE, V451, P168, DOI 10.1038/nature06458 Engel Y, 2010, ANGEW CHEM INT EDIT, V49, P6830, DOI 10.1002/anie.201000847 Gao XPA, 2010, NANO LETT, V10, P547, DOI 10.1021/nl9034219 Garnett E, 2010, NANO LETT, V10, P1082, DOI 10.1021/nl100161z Haick H, 2006, J AM CHEM SOC, V128, P8990, DOI 10.1021/ja056785w Kim JY, 2012, IEEE T NANOTECHNOL, V11, P782, DOI 10.1109/TNANO.2012.2197683 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 Leu PW, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235305 Leu PW, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.195320 Migas DB, 2008, J APPL PHYS, V104, DOI 10.1063/1.2956864 Momma K, 2011, J APPL CRYSTALLOGR, V44, P1272, DOI 10.1107/S0021889811038970 Ng MF, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.155435 Nolan M, 2007, NANO LETT, V7, P34, DOI 10.1021/nl061888d PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 Press W H, 2007, NUMERICAL RECIPES AR, P207 Robinett RW, 2003, EUR J PHYS, V24, P231, DOI 10.1088/0143-0807/24/3/302 Shan B, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.236602 Shen XJ, 2010, ACS NANO, V4, P5869, DOI 10.1021/nn101980x Swain BS, 2010, CURR APPL PHYS, V10, pS439, DOI 10.1016/j.cap.2009.12.029 Wu ZG, 2009, NANO LETT, V9, P2418, DOI 10.1021/nl9010854 Yan JA, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.115319 YEH CY, 1994, PHYS REV B, V50, P14405, DOI 10.1103/PhysRevB.50.14405 Zhao XY, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.125502 Zheng GF, 2010, NANO LETT, V10, P3179, DOI 10.1021/nl1020975Zhuo, Keenan Chou, Mei-YinChou, Mei-Yin/D-3898-2012US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG 02-97ER45632]This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG 02-97ER45632. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC). K Zhuo thanks the hospitality of Academia Sinica where some of the calculations were performed.Iop publishing ltdBristol

2012

Abstract:

Dissociative chemisorption of H-2 on the Al surface is a crucial step in the regeneration of promising hydrogen-storage materials such as alane and alanates. We show from first-principles calculations that transition metals such as V and Nb can act as effective catalysts for H-2 interaction with Al(100). When located at subsurface sites, V and Nb can reduce the activation barrier for H-2 dissociation by significantly larger values than the well-studied catalyst Ti. In addition, the binding energy of a H atom on the surface can be enhanced by as much as 0.4 eV when V or Nb is introduced in the sublayers of Al(100). The diffusion barrier for the adsorbed hydrogen is reduced by similar to 0.1 eV, showing an increased hydrogen mobility. The mechanism of promoting the metal surface reactivity by subsurface alloying with transition metals proposed in this work may serve as a new possible scheme for catalytic reactions on the metal surface.

Notes:

ISI Document Delivery No.: 999UDTimes Cited: 0Cited Reference Count: 24Cited References: Bogdanovic B, 1997, J ALLOY COMPD, V253, P1, DOI 10.1016/S0925-8388(96)03049-6 Chaudhuri S, 2006, J AM CHEM SOC, V128, P11404, DOI 10.1021/ja060437s Chaudhuri S, 2005, J PHYS CHEM B, V109, P6952, DOI 10.1021/jp050558z Chen JC, 2009, J PHYS CHEM C, V113, P11027, DOI 10.1021/jp809636j Du AJ, 2007, CHEM PHYS LETT, V450, P80, DOI [10.1016/j.cplett.2007.09.090, 10.1016/j.cplett.2007.09-090] FINHOLT AE, 1955, J INORG NUCL CHEM, V1, P317, DOI 10.1016/0022-1902(55)80038-3 Go EP, 1999, SURF SCI, V437, P377, DOI 10.1016/S0039-6028(99)00725-6 Graetz J, 2007, J PHYS CHEM C, V111, P19148, DOI 10.1021/jp076804j Graetz J, 2009, CHEM SOC REV, V38, P73, DOI 10.1039/b718842k GUNDERSEN K, 1994, SURF SCI, V304, P131, DOI 10.1016/0039-6028(94)90759-5 Hu JJ, 2012, ADV ENERGY MATER, V2, P560, DOI 10.1002/aenm.201100724 Jensen C, SOLID STATE HYDROGEN, P381 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Li L, 2012, J MATER CHEM, V22, P3127, DOI 10.1039/c1jm14936a Luo WF, 2004, J ALLOY COMPD, V385, P224, DOI 10.1016/j.jallcom.2004.05.004 MAMULA M, 1967, COLLECT CZECH CHEM C, V32, P884 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 Spisak D, 2005, SURF SCI, V582, P69, DOI 10.1016/j.susc.2005.03.005 Tollefson J, 2010, NATURE, V464, P1262, DOI 10.1038/4641262a VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 Venables J. A., 2000, INTRO SURFACE THIN F Wang Y, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.195419 Wong BM, 2011, J PHYS CHEM C, V115, P7778, DOI 10.1021/jp112258sZhang, Feng Wang, Yan Chou, M. Y.Chou, Mei-Yin/D-3898-2012US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632, DE-FG02-05ER46229]This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Awards DEFG02-97ER45632 and DE-FG02-05ER46229.Amer chemical socWashington 

Abstract:

We have performed calculations of adsorption energetics on the graphene surface using the state-of-the-art diffusion quantum Monte Carlo method. Two types of configurations are considered in this work: the adsorption of a single O, F, or H atom on the graphene surface and the H-saturated graphene system (graphane). The adsorption energies are compared with those obtained from density functional theory with various exchange-correlation functionals. The results indicate that the approximate exchange-correlation functionals significantly overestimate the binding of O and F atoms on graphene, although the preferred adsorption sites are consistent. The energy errors are much less for atomic hydrogen adsorbed on the surface. We also find that a single O or H atom on graphene has a higher energy than in the molecular state, while the adsorption of a single F atom is preferred over the gas phase. In addition, the energetics of graphane is reported. The calculated equilibrium lattice constant turns out to be larger than that of graphene, at variance with a recent experimental suggestion.

Notes:

ISI Document Delivery No.: 007APTimes Cited: 0Cited Reference Count: 37Cited References: ANDERSON JB, 1976, J CHEM PHYS, V65, P4121, DOI 10.1063/1.432868 Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710] BENNETT AJ, 1971, PHYS REV B, V3, P1397, DOI 10.1103/PhysRevB.3.1397 Boukhvalov D.W., 2008, Physical Review B (Condensed Matter and Materials Physics), V77, DOI 10.1103/PhysRevB.77.035427 Casolo S, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205412 Casolo S, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3072333 Casula M, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.161102 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 Chan KT, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235430 Clark SJ, 2005, Z KRISTALLOGR, V220, P567, DOI 10.1524/zkri.220.5.567.65075 Drummond ND, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.235119 Duplock EJ, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.225502 Elias DC, 2009, SCIENCE, V323, P610, DOI 10.1126/science.1167130 Foulkes WMC, 2001, REV MOD PHYS, V73, P33, DOI 10.1103/RevModPhys.73.33 Giannozzi P., 2009, J PHYS-CONDENS MAT, V21, P1, DOI DOI 10.1088/0953-8984/21/39/395502 Grinberg I, 2002, J CHEM PHYS, V117, P2264, DOI 10.1063/1.1488596 Grossman JC, 2002, J CHEM PHYS, V117, P1434, DOI 10.1063/1.1487829 KATO T, 1957, COMMUN PUR APPL MATH, V10, P151, DOI 10.1002/cpa.3160100201 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 Loh KP, 2010, J MATER CHEM, V20, P2277, DOI 10.1039/b920539j Needs RJ, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/2/023201 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 POPLE JA, 1989, J CHEM PHYS, V90, P5622, DOI 10.1063/1.456415 RAJAGOPAL G, 1995, PHYS REV B, V51, P10591, DOI 10.1103/PhysRevB.51.10591 Reynolds R J, 1982, J CHEM PHYS, V77, P5593 Robinson JT, 2010, NANO LETT, V10, P3001, DOI 10.1021/nl101437p Sha X, 2001, SURF SCI, V496, P318 Sofo JO, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.153401 UMRIGAR CJ, 1993, J CHEM PHYS, V99, P2865, DOI 10.1063/1.465195 Umrigar C J, 2007, Phys Rev Lett, V98, P110201, DOI 10.1103/PhysRevLett.98.110201 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 Xiang HJ, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.035416 YIN MT, 1984, PHYS REV B, V29, P6996, DOI 10.1103/PhysRevB.29.6996 Zhang YK, 1998, PHYS REV LETT, V80, P890, DOI 10.1103/PhysRevLett.80.890Hsing, C. R. Wei, C. M. Chou, M. Y.Chou, Mei-Yin/D-3898-2012National Science Council of Taiwan [99-2112-M001-034-MY3]; National Center for Theoretical Sciences (NCTS) in Taiwan; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-97ER45632]CMW acknowledges support from the National Science Council of Taiwan under Grant No. 99-2112-M001-034-MY3. CRH and CMW acknowledges support from the National Center for Theoretical Sciences (NCTS) in Taiwan. MYC acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-97ER45632.Iop publishing ltdBristol

Abstract:

The growth of epitaxial graphene on SiC surfaces is accompanied by the evaporation of Si atoms during the growth process. The continuous loss of Si atoms takes place even after the surface graphene layers are formed. Understanding the atomic transport process involved is critical in establishing a growth mechanism to model and control the process. Using density functional theory, we have calculated the potential energy variation and studied the diffusion of Si and C atoms on a single layer of graphene and between graphene sheets. Our results show that Si atoms can move almost freely on graphene and between graphene layers, while C atoms have much larger diffusion barriers. This work provides a detailed description of the energetics of relevant processes in the growth of epitaxial graphene on SiC surfaces.

Notes:

ISI Document Delivery No.: 028VVTimes Cited: 0Cited Reference Count: 37Cited References: Ataca C, 2011, J APPL PHYS, V109, DOI 10.1063/1.3527067 BASKIN Y, 1955, PHYS REV, V100, P544, DOI 10.1103/PhysRev.100.544 Berger C, 2004, J PHYS CHEM B, V108, P19912, DOI 10.1021/jp040650f Berger C, 2006, SCIENCE, V312, P1191, DOI 10.1126/science.1125925 BLOCHL PE, 1994, PHYS REV B, V50, P17953, DOI 10.1103/PhysRevB.50.17953 Chan KT, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235430 de Heer WA, 2011, P NATL ACAD SCI USA, V108, P16900, DOI 10.1073/pnas.1105113108 de Heer WA, 2007, SOLID STATE COMMUN, V143, P92, DOI 10.1016/j.ssc.2007.04.023 Dlubak B, 2012, NAT PHYS, V8, P557, DOI [10.1038/nphys2331, 10.1038/NPHYS2331] Drabinska A, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.245410 Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382] Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Grimme S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495 Hannon JB, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.166101 Hannon JB, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.241404 Hass J, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/32/323202 Hass J, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2358299 Huang H, 2008, ACS NANO, V2, P2513, DOI 10.1021/nn800711v Hupalo M, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.041401 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 Lauffer P, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.155426 Lehtinen PO, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.017202 Lin Y. M., 2012, SCIENCE, V327, P662 Ma Y, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.075419 Maassen T, 2012, NANO LETT, V12, P1498, DOI 10.1021/nl2042497 Momma K, 2011, J APPL CRYSTALLOGR, V44, P1272, DOI 10.1107/S0021889811038970 Moon JS, 2009, IEEE ELECTR DEVICE L, V30, P650, DOI 10.1109/LED.2009.2020699 Norimatsu W, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.035424 Nyakiti LO, 2012, NANO LETT, V12, P1749, DOI 10.1021/nl203353f Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Tanaka S, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.041406 Tromp RM, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.106104 Tsetseris L, 2009, CARBON, V47, P901, DOI 10.1016/j.carbon.2008.12.002 Uramoto Y, 2010, J PHYS SOC JPN, V79, DOI 10.1143/JPSJ.79.074605 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 Virojanadara C, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.245403Xian, Lede Chou, M. Y.Chou, Mei-Yin/D-3898-2012US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; National Science Foundation [DMR-08-20382]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Georgia Tech MRSECThe authors acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No DEFG02-97ER45632 and from the Georgia Tech MRSEC(funded by the National Science Foundation under Grants No DMR-08-20382). This research used computational resources at the National Energy Research Scientific Computing Center (supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231).Iop publishing ltdBristol

Abstract:

A p-T phase diagram of graphene nanoribbons (GNRs) terminated by hydrogen atoms is established based on first-principles calculations, where the stable phase at standard conditions (25 degrees C and 1 bar) is found to be a zigzag GNR (zzGNR). The stability of this new GNR is understood based on an electron-counting model, which predicts semiconducting nonmagnetic zzGNRs. Quantum confinement of Dirac fermions in the stable zzGNRs is found to be qualitatively different from that in ordinary semiconductors. Bifurcation of the band gap is predicted to take place, leading to the formation of polymorphs with distinct band gaps but equal thermodynamic stability. A tight-binding model analysis reveals the role of edge symmetry on the band-gap bifurcation.

Notes:

ISI Document Delivery No.: 950KSTimes Cited: 1Cited Reference Count: 34Cited References: Bai JW, 2009, NANO LETT, V9, P2083, DOI 10.1021/nl900531n Barone V, 2006, NANO LETT, V6, P2748, DOI 10.1021/nl0617033 Cai JM, 2010, NATURE, V466, P470, DOI 10.1038/nature09211 Elias AL, 2010, NANO LETT, V10, P366, DOI 10.1021/nl901631z Gallagher P, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.115409 Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Girit CO, 2009, SCIENCE, V323, P1705, DOI 10.1126/science.1166999 Han MY, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.056801 Han MY, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.206805 Hou ZF, 2011, J PHYS CHEM C, V115, P5392, DOI 10.1021/jp110879d Jia XT, 2009, SCIENCE, V323, P1701, DOI 10.1126/science.1166862 Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54] Jiao LY, 2009, NATURE, V458, P877, DOI 10.1038/nature07919 Kosynkin DV, 2009, NATURE, V458, P872, DOI 10.1038/nature07872 Krauss B, 2010, NANO LETT, V10, P4544, DOI 10.1021/nl102526s Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 Li XL, 2008, SCIENCE, V319, P1229, DOI 10.1126/science.1150878 Liao L, 2010, NANO LETT, V10, P1917, DOI 10.1021/nl100840z Martin I, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.235132 Nakada K, 1996, PHYS REV B, V54, P17954, DOI 10.1103/PhysRevB.54.17954 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Querlioz D, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2838354 Reuter K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.035406 Ritter KA, 2009, NAT MATER, V8, P235, DOI [10.1038/nmat2378, 10.1038/NMAT2378] Son YW, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.216803 Stampfer C, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.056403 Wakabayashi K, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.036601 Wang XR, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.206803 Warner JH, 2009, NAT NANOTECHNOL, V4, P500, DOI [10.1038/nnano.2009.194, 10.1038/NNANO.2009.194] Wassmann T, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.096402 Yang L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.186801 Yoon Y, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2769764Sun, Y. Y. Ruan, W. Y. Gao, Xingfa Bang, Junhyeok Kim, Yong-Hyun Lee, Kyuho West, D. Liu, Xin Chan, T-L. Chou, M. Y. Zhang, S. B.Kim, Yong-Hyun/C-2045-2011; Lee, Kyuho/B-9370-2008; West, Damien/F-8616-2012; Liu, Xin/G-3303-2012; Chou, Mei-Yin/D-3898-2012; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013Lee, Kyuho/0000-0001-9325-3717; Liu, Xin/0000-0002-4422-4108;US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; NSF [DMR-1104994]; DOE [DE-SC0002623]; China MOST [2012CB934001]; NERSC under US DOE [DE-AC02-05CH11231]W.Y.R. and M.Y.C. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DEFG02-97ER45632. The work at RPI was supported by the NSF (Grant No. DMR-1104994) and the DOE (Grant No. DE-SC0002623). X. G. was partially supported by the China MOST 973 program (Grant No. 2012CB934001). The supercomputer time was provided by NERSC under US DOE Grant No. DE-AC02-05CH11231 and CCNI at RPI.1Amer physical socCollege pk

Abstract:

Graphene is believed to be an excellent candidate material for next-generation electronic devices. However, one needs to take into account the nontrivial effect of metal contacts in order to precisely control the charge injection and extraction processes. We have performed transport calculations for graphene junctions with wetting metal leads (metal leads that bind covalently to graphene) using nonequilibrium Green's functions and density functional theory. Quantitative information is provided on the increased resistance with respect to ideal contacts and on the statistics of current fluctuations. We find that charge transport through the studied two-terminal graphene junction with Ti contacts is pseudo-diffusive up to surprisingly high energies.

Notes:

ISI Document Delivery No.: 972QYTimes Cited: 0Cited Reference Count: 37Cited References: Artacho E, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/6/064208 Barraza-Lopez S, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.076807 Beenakker C, 2003, PHYS TODAY, V56, P37, DOI 10.1063/1.1583532 Blake P, 2009, SOLID STATE COMMUN, V149, P1068, DOI 10.1016/j.ssc.2009.02.039 Cayssol J, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.075428 Danneau R, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.196802 Darancet P, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.136803 DiCarlo L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.156801 Do VN, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/42/425301 Du X, 2008, NAT NANOTECHNOL, V3, P491, DOI 10.1038/nnano.2008.199 Giovannetti G, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.026803 Golizadeh-Mojarad R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.085410 Han MY, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.206805 Hannes WR, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.045414 Heersche HB, 2007, NATURE, V446, P56, DOI 10.1038/nature05555 Huard B, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.121402 Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54] Khomyakov P., 2009, PHYS REV B, V79 Khomyakov PA, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.115437 Lee EJH, 2008, NAT NANOTECHNOL, V3, P486, DOI 10.1038/nnano.2008.172 Leonard F, 2011, NAT NANOTECHNOL, V6, P773, DOI [10.1038/nnano.2011.196, 10.1038/NNANO.2011.196] Malec CE, 2011, J APPL PHYS, V109, DOI 10.1063/1.3554480 Nagashio K, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3491804 NAZAROV YV, 1994, PHYS REV LETT, V73, P134, DOI 10.1103/PhysRevLett.73.134 Nouchi R, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3456383 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Robinson JA, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3549183 Rocha AR, 2005, NAT MATER, V4, P335, DOI 10.1038/nmat1349 Saito R, 2000, PHYS REV B, V61, P2981, DOI 10.1103/PhysRevB.61.2981 Stadler R, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.161405 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 Tworzydlo J, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.246802 Varykhalov A, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.121101 Venugopal A, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3290248 Xia FN, 2011, NAT NANOTECHNOL, V6, P179, DOI [10.1038/nnano.2011.6, 10.1038/NNANO.2011.6] Zhang YB, 2005, NATURE, V438, P201, DOI 10.1038/nature04235Barraza-Lopez, Salvador Kindermann, Markus Chou, M. Y.Chou, Mei-Yin/D-3898-2012U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; National Science Foundation [DMR-10-55799, DMR-08-20382]; Georgia Tech MRSECWe thank L. Xian, P. Thibado, K. Park, and M. Kuroda for helpful discussions. S.B.-L. and M.Y.C. acknowledge the support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG02-97ER45632. M.K. is supported by the National Science Foundation (DMR-10-55799). We thank the support within the Georgia Tech MRSEC, funded by the National Science Foundation (DMR-08-20382), and computer support from Teragrid (TG-PHY090002, NCSA's Ember and PSC's Blacklight).Amer chemical socWashington

Abstract:

The Hofstadter butterfly spectrum for Landau levels in a two-dimensional periodic lattice is a rare example exhibiting fractal properties in a truly quantum system. However, the observation of this physical phenomenon in a conventional material will require a magnetic field strength several orders of magnitude larger than what can be produced in a modern laboratory. It turns out that for a specific range of rotational angles twisted bilayer graphene serves as a special system with a fractal energy spectrum under laboratory accessible magnetic field strengths. This unique feature arises from an intriguing electronic structure induced by the interlayer coupling. Using a recursive tight-binding method, we systematically map out the spectra of these Landau levels as a function of the rotational angle. Our results give a complete description of LLs in twisted bilayer graphene for both commensurate and incommensurate rotational angles and provide quantitative predictions of magnetic field strengths for observing the fractal spectra in these graphene systems.

Notes:

ISI Document Delivery No.: 972QYTimes Cited: 5Cited Reference Count: 34Cited References: Albrecht C, 2001, PHYS REV LETT, V86, P147, DOI 10.1103/PhysRevLett.86.147 Bistritzer R, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.035440 Bistritzer R, 2011, P NATL ACAD SCI USA, V108, P12233, DOI 10.1073/pnas.1108174108 Choi MY, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.195437 Coraux J, 2008, NANO LETT, V8, P565, DOI 10.1021/nl0728874 de Gail R, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.045436 Dietl P, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.236405 dos Santos JMBL, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.256802 Gusynin VP, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.146801 Hass J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.125504 HOFSTADTER DR, 1976, PHYS REV B, V14, P2239, DOI 10.1103/PhysRevB.14.2239 Kim KS, 2009, NATURE, V457, P706, DOI 10.1038/nature07719 Kindermann M, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.161406 Kwon SY, 2009, NANO LETT, V9, P3985, DOI 10.1021/nl902140j de Laissardiere GT, 2010, NANO LETT, V10, P804, DOI 10.1021/nl902948m Li GH, 2010, NAT PHYS, V6, P109, DOI 10.1038/NPHYS1463 Li XS, 2009, SCIENCE, V324, P1312, DOI 10.1126/science.1171245 Luican A, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.126802 Miller DL, 2009, SCIENCE, V324, P924, DOI 10.1126/science.1171810 Miller DL, 2010, NAT PHYS, V6, P811, DOI 10.1038/NPHYS1736 Miller DL, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.125427 Moon P, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.195458 Nemec N, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.201404 Novoselov KS, 2005, NATURE, V438, P197, DOI 10.1038/nature04233 Peeters F. M., 2007, PHYS REV B, V76 Shallcross S, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.056803 Morell ES, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.121407 Sutter PW, 2008, NAT MATER, V7, P406, DOI 10.1038/nmat2166 Wang ZF, 2011, NANOSCALE, V3, P4201, DOI 10.1039/c1nr10489f Wang ZF, 2010, ACS NANO, V4, P2459, DOI 10.1021/nn1001722 Wu SD, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.195411 Xian L, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.075425 Zhang YB, 2005, NATURE, V438, P201, DOI 10.1038/nature04235 Zhu W, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.056803Wang, Z. F. Liu, Feng Chou, M. Y.wang, zhengfei/E-8150-2011; Chou, Mei-Yin/D-3898-2012wang, zhengfei/0000-0002-0788-9725;Department of Energy [DE-FG02-97ER45632, DE-FG02-03ER46027]; National Science Foundation [DMR-02-05328]This work is supported by the Department of Energy (Grants DE-FG02-97ER45632 and DE-FG02-03ER46027). We acknowledge interaction with the Georgia Tech MRSEC funded by the National Science Foundation (Grant DMR-02-05328). We thank the NERSC and CHPC at University of Utah for providing the computing resources.5Amer chemical socWashington

Abstract:

Electron-phonon coupling (EPC) in Bernal stacked bilayer graphene (BLG) at different doping levels is studied by first-principles calculations. The phonons considered are long-wavelength high-energy symmetric and antisymmetric optical modes. Both are shown to have distinct EPC-induced phonon linewidths and frequency shifts as a function of the Fermi level E-F. We find that the antisymmetric mode has a strong coupling with the lowest two conduction bands when the Fermi level E-F is nearly 0.5 eV above the neutrality point, giving rise to a giant linewidth (more than 100 cm(-1)) and a significant frequency softening (similar to 60 cm(-1)). Our ab initio calculations show that the origin of the dramatic change arises from the unusual band structure in BLG. The results highlight the band structure effects on the EPC in BLG in the high-carrier-density regime.

Notes:

ISI Document Delivery No.: 969WDTimes Cited: 1Cited Reference Count: 38Cited References: Ando T, 2006, J PHYS SOC JPN, V75, DOI [10.1143/JPSJ.75.054701, 10.1143/JPSJ.75.124701] Ando T, 2007, J PHYS SOC JPN, V76, DOI 10.1143/JPSJ.76.104711 Ando T, 2011, PHYSICA E, V43, P645, DOI 10.1016/j.physe.2010.07.021 Attaccalite C, 2010, NANO LETT, V10, P1172, DOI 10.1021/nl9034626 Baroni S, 2001, REV MOD PHYS, V73, P515, DOI 10.1103/RevModPhys.73.515 Castro Neto AH, 2009, REV MOD PHYS, V81, P109, DOI 10.1103/RevModPhys.81.109 Chen CF, 2011, NATURE, V471, P617, DOI 10.1038/nature09866 Cho JH, 2008, ADV MATER, V20, P686, DOI 10.1002/adma.200701069 Das A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.155417 Efetov DK, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.161412 Efetov DK, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.256805 Giannozzi P, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/39/395502 Gruneis A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.205106 Kuzmenko AB, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.116804 Lazzeri M, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.266407 Lee B, 2010, NANO LETT, V10, P2427, DOI 10.1021/nl100587e Li ZQ, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.037403 Mak KF, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.256405 Malard LM, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.257401 McChesney JL, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136803 Nicol EJ, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.155409 Park CH, 2008, NANO LETT, V8, P4229, DOI 10.1021/nl801884n Park CH, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.086804 Pisana S, 2007, NAT MATER, V6, P198, DOI 10.1038/nmat1846 Piscanec S, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.185503 Stoller MD, 2008, NANO LETT, V8, P3498, DOI 10.1021/nl802558y Tang TT, 2010, NAT NANOTECHNOL, V5, P32, DOI [10.1038/nnano.2009.334, 10.1038/NNANO.2009.334] TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 Valla T, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.107007 Yan J, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.136804 Yan JA, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.125401 Yan JA, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.115443 Yan JA, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.245418 Yang L, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.186802 Ye JT, 2011, P NATL ACAD SCI USA, V108, P13002, DOI 10.1073/pnas.1018388108 Zhang LM, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.235408 Zhang YB, 2009, NATURE, V459, P820, DOI 10.1038/nature08105 Zhao WJ, 2011, J AM CHEM SOC, V133, P5941, DOI 10.1021/ja110939aYan, Jia-An Varga, K. Chou, M. Y.Yan, Jia-An/F-8282-2010; Chou, Mei-Yin/D-3898-2012; Varga, Kalman/A-7102-2013Yan, Jia-An/0000-0002-3959-4091;US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]J.A.Y. is grateful to Z. Jiang, F. Giustino, C.-H. Park, W. Duan, F. Liu, and S. C. Zhang for fruitful discussions and thanks Mark A. Edwards for the support. Part of this work was performed at the Georgia Southern University in Statesboro, Georgia. M.Y.C. acknowledges support by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DEFG02-97ER45632. This research used computational resources at the National Energy Research Scientific Computing Center (supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231) and at the National Institute for Computational Sciences under an XSEDE startup allocation (Request No. DMR110111).1Amer physical socCollege pk