PUBLICATIONS

2006

Abstract:

We have used the combination of the coupling-constant integration procedure and the variational quantum Monte Carlo method to study the exchange-correlation (XC) interaction in small molecules: Si-2, C2H2, C2H4, and C2H6. In this paper we report the calculated XC energy density, a central quantity in density functional theory, as deduced from the interaction between the electron and its XC hole integrated over the interaction strength. Comparing these "exact" XC energy densities with results using the local-density approximation (LDA), one can analyze the errors in this widely used approximation. Since the XC energy is an integrated quantity, error cancellation among the XC energy density in different regions is possible. Indeed we find a general error cancellation between the high-density and low-density regions. Moreover, the error distribution of the exchange contribution is out of phase with the error distribution of the correlation contribution. Similar to what is found for bulk silicon and an isolated silicon atom, the spatial variation of the errors of the LDA XC energy density in these molecules largely follows the sign and shape of the Laplacian of the electron density. Some noticeable deviations are found in Si-2 in which the Laplacian peaks between the atoms, while the LDA error peaks in the regions "behind" atoms where a good portion of the charge density originates from an occupied 1 sigma(u) antibonding orbital. Our results indicate that, although the functional form could be quite complex, an XC energy functional containing the Laplacian of the energy is a promising possibility for improving LDA.

Notes:

ISI Document Delivery No.: 091ZPTimes Cited: 3Cited Reference Count: 48Cited References: Cancio AC, 2006, PHYS REV B, V74 NEEDS RJ, 2004, CASINO VERSION 1 7 U Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7 LESTER WA, 2002, RECENT ADV QUANTUM 2 Cancio AC, 2001, PHYS REV B, V64, DOI 

10.1103/PhysRevB.64.115112 Puzder A, 2001, PHYS REV A, V64 Nekovee M, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.036401 Foulkes WMC, 2001, REV MOD PHYS, V73, P33, DOI 10.1103/RevModPhys.73.33 PERDEW JP, 2001, AIP C P, V577 Proynov E, 2000, J CHEM PHYS, V113, P10013, DOI 10.1063/1.1321309 Perdew JP, 1999, PHYS REV LETT, V82, P5179, DOI 10.1103/PhysRevLett.82.5179 Kent PRC, 1999, PHYS REV B, V59, P12344, DOI 10.1103/PhysRevB.59.12344 KRIEGER JB, 1999, ELECT CORRELATIONS M Van Voorhis T, 1998, J CHEM PHYS, V109, P400, DOI 10.1063/1.476577 Hood RQ, 1998, PHYS REV B, V57, P8972, DOI 

10.1103/PhysRevB.57.8972 Fuchs M, 1998, PHYS REV B, V57, P2134, DOI 10.1103/PhysRevB.57.2134 Filatov M, 1998, PHYS REV A, V57, P189, DOI 

10.1103/PhysRevA.57.189 Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI

10.1103/PhysRevLett.78.1396 LESTER WA, 1997, RECENT ADV QUANTUM M Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Filippi C, 1996, J CHEM PHYS, V105, P213, DOI 10.1063/1.471865 GROSSMAN JC, 1995, PHYS REV LETT, V75, P3870, DOI 

10.1103/PhysRevLett.75.3870 GROSSMAN JC, 1995, PHYS REV LETT, V74, P1323, DOI 

10.1103/PhysRevLett.74.1323 UMRIGAR CJ, 1994, PHYS REV A, V50, P3827, DOI 

10.1103/PhysRevA.50.3827 HAMMOND BL, 1994, MONTE CARLO METHODS ENGEL E, 1993, PHYS REV B, V47, P13164, DOI 10.1103/PhysRevB.47.13164 GORLING A, 1993, PHYS REV B, V47, P13105, DOI 

10.1103/PhysRevB.47.13105 GARCIA A, 1992, PHYS REV B, V46, P9829, DOI 10.1103/PhysRevB.46.9829 FAHY S, 1990, PHYS REV LETT, V65, P1478, DOI 

10.1103/PhysRevLett.65.1478 SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172, DOI 10.1063/1.458750 PARR RG, 1989, DENSITY FUNCTIONAL T, P186 BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 LEE CT, 1988, PHYS REV B, V37, P785, DOI 

10.1103/PhysRevB.37.785 LEVY M, 1985, PHYS REV A, V32, P2010, DOI 

10.1103/PhysRevA.32.2010 PERDEW JP, 1985, PHYS REV LETT, V55, P1665, DOI 

10.1103/PhysRevLett.55.1665 HARRIS J, 1984, PHYS REV A, V29, P1648, DOI 

10.1103/PhysRevA.29.1648 NORTHRUP JE, 1983, PHYS REV A, V28, P1945, DOI 

10.1103/PhysRevA.28.1945 REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593, DOI 

10.1063/1.443766 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 HAMANN DR, 1979, PHYS REV LETT, V43, P1494, DOI

10.1103/PhysRevLett.43.1494 ANDERSON JB, 1976, J CHEM PHYS, V65, P4121, DOI 

10.1063/1.432868 GUNNARSSON O, 1976, PHYS REV B, V13, P4274, DOI 

10.1103/PhysRevB.13.4274 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 KATO T, 1957, COMMUN PUR APPL MATH, V10, P151, DOI 

10.1002/cpa.3160100201Hsing, C. R. Chou, M. Y. Lee, T. K.AMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We present a first-principles investigation of the lattice dynamics and thermodynamical properties of a complex hydride NaAlH(4), a promising material for hydrogen storage. The calculations are performed within the density-functional-theory framework and using a linear response theory. Calculations of the phonon spectrum, Born effective charges Z(*), and dielectric constants in high and low frequency limits are reported. The mode characters of the zone-center phonons, including the LO-TO splitting, are identified and compared to the experiment. The quasiharmonic approach is used to study thermal expansion as well as the mean square displacement of each atom as a function of temperature. A connection is established between the latter and the melting point. The inclusion of the zero-point motion leads to an expanded lattice compared to the static lattice, while the low frequency oscillations are found to play an important role in the melting and decomposition of NaAlH(4).

Notes:

ISI Document Delivery No.: 048MDTimes Cited: 14Cited Reference Count: 33Cited References: Gomes S, 2005, J ALLOY COMPD, V390, P305, DOI 10.1016/j.jallcom.2004.08.036 Ke XZ, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.024117 Majzoub EH, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.024118 Peles A, 2004, PHYS REV B, V70, 

DOI 10.1103/PhysRevB.70.165105 Iniguez J, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.060101 Ozolins V, 2004, J ALLOY COMPD, V375, P1, DOI 

10.1016/j.jallcom.2003.11.154 Ross DJ, 2004, CHEM PHYS LETT, V388, P430, DOI 10.1016/j.cplett.2004.03.039 Aguayo A, 2004, PHYS REV B, V69, DOI 

10.1103/PhysRevB.69.155103 Hauback BC, 2003, J ALLOY COMPD, V358, P142, DOI 10.1016/S0925-8388(03)00136-1 Opalka SM, 2003, J ALLOY COMPD, V356, P486, DOI

10.1016/S0925-8388(03)00364-5 Vajeeston P, 2003, APPL PHYS LETT, V82, P2257, DOI 10.1063/1.1566086 ZUTTEL A, 2003, MATER TODAY, V6, P24, DOI 10.1016/S1369-7021(03)00922-2 Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7 Schlapbach L, 2001, NATURE, V414, P353, DOI 

10.1038/35104634 Jensen CM, 2001, APPL PHYS A-MATER, V72, P213, DOI 10.1007/s003390100784 Gross KJ, 2000, J ALLOY COMPD, V297, P270, DOI 

10.1016/S0925-8388(99)00598-8 Bogdanovic B, 1997, J ALLOY COMPD, V253, P1, DOI 10.1016/S0925-8388(96)03049-6 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI

10.1103/PhysRevLett.77.3865 PULLUMBI P, 1994, J CHEM PHYS, V101, P3610, DOI 10.1063/1.467546 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI

10.1103/PhysRevB.43.1993 BELSKII VK, 1983, RUSS J INORG CHEM, V28, P1528 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 BONNETOT B, 1980, J CHEM THERMODYN, V12, P249, DOI 10.1016/0021-9614(80)90043-9 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 LAUHER JW, 1979, ACTA CRYSTALLOGR B, V35, P1454, DOI 10.1107/S0567740879006701 SHIRK AE, 1973, J AM CHEM SOC, V95, P5904, DOI 10.1021/ja00799a013 TEMME FP, 1973, J CHEM SOC FARAD T 2, V69, P783, DOI 10.1039/f29736900783 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 BORN M, 1954, DYNAMICAL THEORY CRY HERZBERG G, 1945, MOLECULAR SPECTRA MO, V2, P100 LINDEMANN FA, 1910, Z PHYS, V11, P609 LOVVIK OM, IN PRESS J MAT RESPeles, A. Chou, M. Y.AMER PHYSICAL SOCCOLLEGE PK 

Abstract:

By using a low temperature scanning tunneling microscope we have probed the superconducting energy gap of epitaxially grown Pb films as a function of the layer thickness in an ultrathin regime (5-18 ML). The layer-dependent energy gap and transition temperature (T-c) show persistent quantum oscillations down to the lowest thickness without any sign of suppression. Moreover, by comparison with the quantum-well states measured above T-c and the theoretical calculations, we found that the T-c oscillation correlates directly with the density of states oscillation at E-F. The oscillation is manifested by the phase matching of the Fermi wavelength and the layer thickness, resulting in a bilayer periodicity modulated by a longer wavelength quantum beat.

Notes:

ISI Document Delivery No.: 004MYTimes Cited: 86Cited Reference Count: 21Cited References: Guo Y, 2004, SCIENCE, V306, P1915, DOI 10.1126/science.1105130 Czoschke P, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.036103 Luh DA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.256802 Su WB, 2001, PHYS REV LETT, V86, P5116, DOI 10.1103/PhysRevLett.86.5116 Luh DA, 2001, SCIENCE, V292, P1131, DOI 10.1126/science.292.5519.1131 Yeh V, 2000, PHYS REV LETT, V85, P5158, DOI 

10.1103/PhysRevLett.85.5158 Zhang ZY, 1998, PHYS REV LETT, V80, P5381, DOI 10.1103/PhysRevLett.80.5381 Altfeder IB, 1997, PHYS REV LETT, V78, P2815, DOI 

10.1103/PhysRevLett.78.2815 Smith AR, 1996, SCIENCE, V273, P226, DOI 10.1126/science.273.5272.226 HAVILAND DB, 1989, PHYS REV LETT, V62, P2180, DOI 

10.1103/PhysRevLett.62.2180 DYNES RC, 1986, PHYS REV LETT, V57, P2195, DOI 10.1103/PhysRevLett.57.2195 ORR BG, 1985, PHYS REV B, V32, P7586, DOI 

10.1103/PhysRevB.32.7586 ORR BG, 1984, PHYS REV LETT, V53, P2046, DOI 10.1103/PhysRevLett.53.2046 MILLER DL, 1977, PHYS REV B, V15, P4180, DOI 

10.1103/PhysRevB.15.4180 YU M, 1976, PHYS REV B, V14, P996, DOI 10.1103/PhysRevB.14.996 TOULOUKIAN YS, 1975, THERMOPHYSICAL PROPE, V12 STRONGIN M, 1970, PHYS REV B-SOLID ST, V1, P1078, DOI 10.1103/PhysRevB.1.1078 PASKIN A, 1965, PHYS REV, V140, P1965 BLATT JM, 1963, PHYS REV LETT, V10, P332, DOI 

10.1103/PhysRevLett.10.332 THOMPSON CJ, 1963, PHYS LETT, V5, P6, DOI 10.1016/S0375-9601(63)80003-1 BARDEEN J, 1957, PHYS REV, V108, P1175, DOI 

10.1103/PhysRev.108.1175Eom, D Qin, S Chou, MY Shih, CKAMERICAN PHYSICAL SOCCOLLEGE PK 

2005

Abstract:

n/a

Notes:

ISI Document Delivery No.: 932HDTimes Cited: 6Cited Reference Count: 10Cited References: Bruneval F, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.219701 Zhao XY, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.236805 Chang E, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.196401 Spataru CD, 2004, APPL PHYS A-MATER, V78, P1129, DOI 10.1007/s00339-003-2464-2 Spataru CD, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.077402 Marinopoulos AG, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.256402 Rohlfing M, 1998, PHYS REV LETT, V81, P2312, DOI 10.1103/PhysRevLett.81.2312 Albrecht S, 1998, PHYS REV LETT, V80, P4510, DOI 10.1103/PhysRevLett.80.4510 Benedict LX, 1998, PHYS REV LETT, V80, P4514, DOI 10.1103/PhysRevLett.80.4514 AJIKI H, 1994, PHYSICA B, V201, P349, DOI 10.1016/0921-4526(94)91112-6Zhao, XY Wei, CM Yang, L Chou, MYAMER PHYSICAL SOCCOLLEGE PK 

Abstract:

Hydrogenation-induced metal-semiconductor transitions usually occur in simple systems based on rare earths and/or magnesium, accompanied by major reconstructions of the metal host (atom shifts >2 Angstrom). We report on the first such transition in a quaternary system based on a transition element. Metallic LaMg2Ni absorbs hydrogen near ambient conditions, forming the nonmetallic hydride LaMg2NiH7 which has a nearly unchanged metal host structure (atom shifts <0.7 Angstrom). The transition is induced by a charge transfer of conduction electrons into tetrahedral [NiH4](4-) complexes having closed-shell electron configurations.

Notes:

ISI Document Delivery No.: 899JJTimes Cited: 21Cited Reference Count: 17Cited References: YVON K, 2004, ENCY MAT SCI TECHNOL, P1 Alford JA, 2003, PHYS REV B, V67 Renaudin G, 2003, J ALLOY COMPD, V350, P145, DOI 10.1016/S0925-8388(02)00963-5 Bowman RC, 2002, MRS BULL, V27, P688, DOI 10.1557/mrs2002.223 Cerny R, 2002, J ALLOY COMPD, V340, P180, DOI 10.1016/S0925-8388(02)00050-6 Isidorsson J, 2002, APPL PHYS LETT, V80, P2305, DOI 10.1063/1.1463205 Richardson TJ, 2002, APPL PHYS LETT, V80, P1349, DOI 10.1063/1.1454218 Schlapbach L, 2001, NATURE, V414, P353, DOI 10.1038/35104634 GRIESSEN R, 2001, EUROPHYS NEWS, V32, P41, DOI 10.1051/epn:2001201 Ng KK, 1997, PHYS REV LETT, V78, P1311, DOI 10.1103/PhysRevLett.78.1311 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Huiberts JN, 1996, NATURE, V380, P231, DOI 10.1038/380231a0 VAJDA P, 1995, HDB PHYSICS CHEM RAR, V20, P207, DOI 10.1016/S0168-1273(05)80071-6 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 ORGAZ E, 1993, Z PHYS CHEM, V181, P1 REANUDIN C, IN PRESS YVON K, IN PRESS ENCY INORGAYvon, K Renaudin, G Wei, CM Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

2004

Abstract:

The atomic geometry, electronic structure, and magnetic moment of 4d transition-metal clusters with 13 atoms are studied by pseudopotential density-functional calculations. We find a new buckled biplanar structure with a C-2v symmetry stabilized by enhanced s-d hybridization. It has a lower energy than the close-packed icosahedral or cuboctahedral structure for elements with more than half-filled d shells. The magnetic moments of this buckled biplanar structure are found to be smaller than those of the icosahedral structure and closer to available experimental results.

Notes:

ISI Document Delivery No.: 857PSTimes Cited: 79Cited Reference Count: 31Cited References: Hakkinen H, 2003, J PHYS CHEM A, V107, P6168, DOI 10.1021/jp035437i KHANNA SN, 2003, QUANTUM PHENOMENA CL Oviedo J, 2002, J CHEM PHYS, V117, P9548, DOI 10.1063/1.1524154 Hakkinen H, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.033401 Kumar V, 2002, PHYS REV B, V65 Thomas OC, 2001, J CHEM PHYS, V114, P5514, DOI 10.1063/1.1349547 Moseler M, 2001, PHYS REV LETT, V86, P2545, DOI 10.1103/PhysRevLett.86.2545 Rao BK, 2000, PHYS REV B, V62, P4666, DOI 10.1103/PhysRevB.62.4666 Calleja M, 1999, PHYS REV B, V60, P2020, DOI 10.1103/PhysRevB.60.2020 Sakurai M, 1999, J CHEM PHYS, V111, P235, DOI 10.1063/1.479268 Reddy BV, 1999, PHYS REV B, V59, P5214, DOI 10.1103/PhysRevB.59.5214 Akola J, 1998, PHYS REV B, V58, P3601, DOI 10.1103/PhysRevB.58.3601 Watari N, 1997, J CHEM PHYS, V106, P7531, DOI 10.1063/1.473751 Haberlen OD, 1997, J CHEM PHYS, V106, P5189 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245, DOI 10.1088/0953-8984/6/40/015 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 COX AJ, 1994, PHYS REV B, V49, P12295, DOI 10.1103/PhysRevB.49.12295 COX AJ, 1993, PHYS REV LETT, V71, P923, DOI 10.1103/PhysRevLett.71.923 REDDY BV, 1993, PHYS REV LETT, V70, P3323, DOI 10.1103/PhysRevLett.70.3323 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 PERDEW JP, 1991, ELECT STRUCTURE SOLI MARTIN TP, 1990, CHEM PHYS LETT, V172, P209, DOI 10.1016/0009-2614(90)85389-T SCHRIVER KE, 1990, PHYS REV LETT, V64, P2539, DOI 10.1103/PhysRevLett.64.2539 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 KNIGHT WD, 1984, PHYS REV LETT, V52, P2141, DOI 10.1103/PhysRevLett.52.2141 NOSE S, 1984, J CHEM PHYS, V81, P511 ECHT O, 1981, PHYS REV LETT, V47, P1121, DOI 10.1103/PhysRevLett.47.1121 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, P864Chang, CM Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We present a first-principles investigation of the structural properties, electronic structure, and the chemical stability of the complex hydrides NaAlH(4) and Na(3)AlH(6). The calculations are performed within the density functional framework employing norm conserving pseudopotentials. The structural properties of both hydrides compare well with experimental data. A detailed study of the electronic structure and the charge-density redistribution reveal the features of an ionic covalent bonding between Al and H in the (AlH(4))(-) and (AlH(6))(-3) anionic complexes embedded in the matrix of Na(+) cations. The orbital hybridization and the characteristics of bonding orbitals within the complexes are identified. The calculated reaction energies of these complex hydrides are in good agreement with the experimentally determined values.

Notes:

ISI Document Delivery No.: 867QBTimes Cited: 49Cited Reference Count: 29Cited References: Iniguez J, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.060101 Aguayo A, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.155103 de Dompablo MEAY, 2004, J ALLOY COMPD, V364, P6 Vajeeston P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.020104 Vajeeston P, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.212101 Hauback BC, 2003, J ALLOY COMPD, V358, P142, DOI 10.1016/S0925-8388(03)00136-1 Opalka SM, 2003, J ALLOY COMPD, V356, P486, DOI 10.1016/S0925-8388(03)00364-5 VAJEETSON P, 2003, APPL PHYS LETT, V82, P22557 ZUTTEL A, 2003, MATER TODAY, V6, P24, DOI 10.1016/S1369-7021(03)00922-2 Gross KJ, 2002, J ALLOY COMPD, V330, P683, DOI 10.1016/S0925-8388(01)01586-9 Schlapbach L, 2001, NATURE, V414, P353, DOI 10.1038/35104634 Jensen CM, 2001, APPL PHYS A-MATER, V72, P213, DOI 10.1007/s003390100784 Bogdanovic B, 2000, J ALLOY COMPD, V302, P36, DOI 10.1016/S0925-8388(99)00663-5 Ronnebro E, 2000, J ALLOY COMPD, V299, P101, DOI 10.1016/S0925-8388(99)00665-9 Bogdanovic B, 1997, J ALLOY COMPD, V253, P1, DOI 10.1016/S0925-8388(96)03049-6 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 PERDEW JP, 1991, PHYS REV LETT, V66, P508, DOI 10.1103/PhysRevLett.66.508 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 CHELIKOWSKY JR, 1986, PHYS REV LETT, V56, P961, DOI 10.1103/PhysRevLett.56.961 BELSKII VK, 1983, RUSS J INORG CHEM, V28, P1528 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 LAUHER JW, 1979, ACTA CRYSTALLOGR B, V35, P1454, DOI 10.1107/S0567740879006701 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 SINGH D, UNPUBPeles, A Alford, JA Ma, Z Yang, L Chou, MYAMER PHYSICAL SOCCOLLEGE PK 

Abstract:

We investigate the structural, electronic, and optical properties of hydrogen-passivated silicon nanowires along [110] and [111] directions with diameter d up to 4.2 nm from first principles. The size and orientation dependence of the band gap is investigated and the local-density gap is corrected with the GW approximation. Quantum confinement becomes significant for d<2.2 nm, where the dielectric function exhibits strong anisotropy and new low-energy absorption peaks start to appear in the imaginary part of the dielectric function for polarization along the wire axis.

Notes:

ISI Document Delivery No.: 828GNTimes Cited: 234Cited Reference Count: 22Cited References: Ma DDD, 2003, SCIENCE, V299, P1874, DOI 10.1126/science.1080313 ZHAO Y, 2003, PHYS REV LETT, V91, P35501 Katz D, 2002, PHYS REV LETT, V89 Cui Y, 2001, APPL PHYS LETT, V78, P2214, DOI 10.1063/1.1363692 Cui Y, 2001, SCIENCE, V291, P851, DOI 10.1126/science.291.5505.851 Duan XF, 2001, NATURE, V409, P66, DOI 10.1038/35051047 Landman U, 2000, PHYS REV LETT, V85, P1958, DOI 10.1103/PhysRevLett.85.1958 Duan XF, 2000, APPL PHYS LETT, V76, P1116, DOI 10.1063/1.125956 Holmes JD, 2000, SCIENCE, V287, P1471, DOI 10.1126/science.287.5457.1471 Morales AM, 1998, SCIENCE, V279, P208, DOI 10.1126/science.279.5348.208 Xia JB, 1997, PHYS REV B, V55, P15688, DOI 10.1103/PhysRevB.55.15688 DELLEY B, 1995, APPL PHYS LETT, V67, P2370, DOI 10.1063/1.114348 YEH CY, 1994, PHYS REV B, V50, P14405, DOI 10.1103/PhysRevB.50.14405 DELERUE C, 1993, PHYS REV B, V48, P11024, DOI 10.1103/PhysRevB.48.11024 HYBERTSEN MS, 1993, PHYS REV B, V48, P4608, DOI 10.1103/PhysRevB.48.4608 BUDA F, 1992, PHYS REV LETT, V69, P1272, DOI 10.1103/PhysRevLett.69.1272 READ AJ, 1992, PHYS REV LETT, V69, P1232, DOI 10.1103/PhysRevLett.69.1232 SANDERS GD, 1992, PHYS REV B, V45, P9202, DOI 10.1103/PhysRevB.45.9202 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 CANHAM LT, 1990, APPL PHYS LETT, V57, P1046, DOI 10.1063/1.103561 COHEN ML, 1988, ELECT STRUCTURE OPTI HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390Zhao, XY Wei, CM Yang, L Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

Atomically uniform Pb films are successfully prepared on Si(111), despite a large lattice mismatch. Angle-resolved photoemission measurements of the electronic structure show layer-resolved quantum well states which can be correlated with dramatic variations in thermal stability. The odd film thicknesses N=5, 7, and 9 monolayers show sharp quantum well states. The even film thicknesses N=6 and 8 do not, but are much more stable than the odd film thicknesses. This correlation is discussed in terms of a total energy calculation and Friedel-like oscillations in properties.

Notes:

ISI Document Delivery No.: 836CFTimes Cited: 90Cited Reference Count: 21Cited References: Wei CM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.233408 Mans A, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.195410 Luh DA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.256802 Hupalo M, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.205406 Hupalo M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.155307 Schmidt T, 2001, SURF SCI, V480, P137, DOI 10.1016/S0039-6028(01)00828-7 Su WB, 2001, PHYS REV LETT, V86, P5116, DOI 10.1103/PhysRevLett.86.5116 Luh DA, 2001, SCIENCE, V292, P1131, DOI 10.1126/science.292.5519.1131 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 10.1016/S0167-5729(00)00006-6 Paggel JJ, 1999, SCIENCE, V283, P1709, DOI 10.1126/science.283.5408.1709 Schmitsdorf RF, 1999, EUR PHYS J B, V7, P457, DOI 10.1007/s100510050634 Altfeder IB, 1997, PHYS REV LETT, V78, P2815, DOI 10.1103/PhysRevLett.78.2815 JALOCHOWSKI M, 1995, PHYS REV B, V51, P7231, DOI 10.1103/PhysRevB.51.7231 HWANG IS, 1995, SURF SCI, V323, P241, DOI 10.1016/0039-6028(94)00613-X JALOCHOWSKI M, 1992, PHYS REV B, V46, P4693, DOI 10.1103/PhysRevB.46.4693 CARLISLE JA, 1992, PHYS REV B, V45, P3400, DOI 10.1103/PhysRevB.45.3400 HESLINGA DR, 1990, PHYS REV LETT, V64, P1589, DOI 10.1103/PhysRevLett.64.1589 SMITH NV, 1985, PHYS REV B, V32, P3549, DOI 10.1103/PhysRevB.32.3549 ESTRUP PJ, 1964, SURF SCI, V2, P465, DOI 10.1016/0039-6028(64)90088-3 TRINGIDES MC, COMMUNICATION WEI CM, UNPUBUpton, MH Wei, CM Chou, MY Miller, T Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

2003

Abstract:

We have studied the properties of quantum well states in supported Ag(100) films on the Fe substrate by first-principles density-functional calculations. The energies of these quantum well states as a function of thickness N are examined in terms of the characteristic phase shift of the electronic wave function at the interface. These energy-dependent phase shifts are determined numerically for both the film-substrate and film-vacuum interfaces. It is also found that the substrate has a major effect on film stability, enhancing the stability of the N=5 film and reversing that of the N=2 film.

Notes:

ISI Document Delivery No.: 731AGTimes Cited: 29Cited Reference Count: 25Cited References: Hong HW, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.076104 Paggel JJ, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.233403 Otero R, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.115401 Tang HR, 2002, CHEM PHYS LETT, V355, P410, DOI 10.1016/S0009-2614(02)00252-X Ogawa S, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.116801 Hupalo M, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.205406 Qiu ZQ, 2002, J PHYS-CONDENS MAT, V14, pR169, DOI 10.1088/0953-8984/14/8/201 Hupalo M, 2001, SURF SCI, V493, P526, DOI 10.1016/S0039-6028(01)01262-6 Su WB, 2001, PHYS REV LETT, V86, P5116, DOI 10.1103/PhysRevLett.86.5116 Luh DA, 2001, SCIENCE, V292, P1131, DOI 10.1126/science.292.5519.1131 Paggel JJ, 2000, PHYS REV B, V61, P1804, DOI 10.1103/PhysRevB.61.1804 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 10.1016/S0167-5729(00)00006-6 Paggel JJ, 1999, SCIENCE, V283, P1709, DOI 10.1126/science.283.5408.1709 Zhang ZY, 1998, PHYS REV LETT, V80, P5381, DOI 10.1103/PhysRevLett.80.5381 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Crampin S, 1996, PHYS REV B, V53, P13817, DOI 10.1103/PhysRevB.53.13817 SMITH NV, 1994, PHYS REV B, V49, P332, DOI 10.1103/PhysRevB.49.332 ORTEGA JE, 1993, PHYS REV B, V47, P1540, DOI 10.1103/PhysRevB.47.1540 ORTEGA JE, 1992, PHYS REV LETT, V69, P844, DOI 10.1103/PhysRevLett.69.844 PERDEW JP, 1991, ELECT STRUCTURE SOLI VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472 MILLER T, 1988, PHYS REV LETT, V61, P1404, DOI 10.1103/PhysRevLett.61.1404 COLERIDGE PT, 1982, PHYS REV B, V25, P7818, DOI 10.1103/PhysRevB.25.7818 MCRAE EG, 1981, SURF SCI, V108, P435, DOI 10.1016/0039-6028(81)90559-8Wei, CM Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

Quasiparticle band structures for the cubic trihydrides YH3 and LaH3 have been calculated by evaluating the self-energy in the GW approximation using ab initio pseudopotentials and plane waves. These are the prototype metal hydrides that exhibit switchable optical properties. For both materials, the local-density approximation (LDA) yields semimetallic energy bands with a direct overlap of about 1 eV. We find the self-energy correction to the LDA energies opens a gap at Gamma of 0.8-0.9 eV for LaH3 and 0.2-0.3 eV for YH3, where the latter is in sharp contrast to a previous study using linear-muffin-tin orbitals. The quasiparticle band gaps are analyzed as a function of an initial shift in the LDA bands used to evaluate the random-phase approximation screening in constructing the self-energy. We also make a comparison of results obtained by using two different pseudopotentials, each designed to better approximate exchange and correlation between the semicore states and valence states of Y and La.

Notes:

ISI Document Delivery No.: 666CLTimes Cited: 15Cited Reference Count: 34Cited References: Usuda M, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.125101 van Gelderen P, 2002, PHYS REV B, V66 Chang EK, 2001, PHYS REV B, V64 van der Molen SJ, 2001, PHYS REV B, V63 van Gogh ATM, 2001, PHYS REV B, V63, part. no., DOI 10.1103/PhysRevB.63.195105 Kierey H, 2001, PHYS REV B, V63 van Gelderen P, 2000, PHYS REV LETT, V85, P2989, DOI 10.1103/PhysRevLett.85.2989 Miyake T, 2000, PHYS REV B, V61, P16491, DOI 10.1103/PhysRevB.61.16491 Aulbur WG, 2000, SOLID STATE PHYS, V54, P1 OSHIKIRI M, 2000, J PHYS SOC JPN, V69, P2123 Ng KK, 1999, PHYS REV B, V59, P5398, DOI 10.1103/PhysRevB.59.5398 van der Sluis P, 1998, APPL PHYS LETT, V73, P1826, DOI 10.1063/1.122295 Rohlfing M, 1998, PHYS REV B, V57, P6485, DOI 10.1103/PhysRevB.57.6485 Eder R, 1997, PHYS REV B, V56, P10115, DOI 10.1103/PhysRevB.56.10115 Shirley EL, 1997, PHYS REV B, V56, P6648, DOI 10.1103/PhysRevB.56.6648 vanderSluis P, 1997, APPL PHYS LETT, V70, P3356, DOI 10.1063/1.119169 Kelly PJ, 1997, PHYS REV LETT, V78, P1315, DOI 10.1103/PhysRevLett.78.1315 Huiberts JN, 1996, NATURE, V380, P231, DOI 10.1038/380231a0 ROHLFING M, 1995, PHYS REV LETT, V75, P3489, DOI 10.1103/PhysRevLett.75.3489 WANG Y, 1994, PHYS REV B, V49, P10731, DOI 10.1103/PhysRevB.49.10731 WANG Y, 1993, PHYS REV LETT, V71, P1226, DOI 10.1103/PhysRevLett.71.1226 DEKKER JP, 1993, J PHYS-CONDENS MAT, V5, P4805, DOI 10.1088/0953-8984/5/27/025 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 NORTHRUP JE, 1989, PHYS REV B, V39, P8198, DOI 10.1103/PhysRevB.39.8198 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 PERDEW JP, 1983, PHYS REV LETT, V51, P1884, DOI 10.1103/PhysRevLett.51.1884 SHAM LJ, 1983, PHYS REV LETT, V51, P1888, DOI 10.1103/PhysRevLett.51.1888 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 HEDIN L, 1969, SOLID STATE PHYS, V23, P1 HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796 WISER N, 1963, PHYS REV, V129, P62, DOI 10.1103/PhysRev.129.62 ADLER SL, 1962, PHYS REV, V126, P413, DOI 10.1103/PhysRev.126.413Alford, JA Chou, MY Chang, EK Louie, SGAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

Real-time in situ x-ray studies of continuous Pb deposition on Si(111)-(7x7) at 180 K reveal an unusual growth behavior. A wetting layer forms first to cover the entire surface. Then islands of a fairly uniform height of about five monolayers form on top of the wetting layer and grow to fill the surface. The growth then switches to a layer-by-layer mode upon further deposition. This behavior of alternating layer and island growth can be attributed to spontaneous quantum phase separation based on a first-principles calculation of the system energy.

Notes:

ISI Document Delivery No.: 647JZTimes Cited: 60Cited Reference Count: 17Cited References: Wei CM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.233408 Otero R, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.115401 Hupalo M, 2001, SURF SCI, V493, P526, DOI 10.1016/S0039-6028(01)01262-6 Materzanini G, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.235405 Su WB, 2001, PHYS REV LETT, V86, P5116, DOI 10.1103/PhysRevLett.86.5116 Luh DA, 2001, SCIENCE, V292, P1131, DOI 10.1126/science.292.5519.1131 Budde K, 2000, PHYS REV B, V61, P10602 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 10.1016/S0167-5729(00)00006-6 Gavioli L, 1999, PHYS REV LETT, V82, P129, DOI 10.1103/PhysRevLett.82.129 Zhang ZY, 1998, PHYS REV LETT, V80, P5381, DOI 10.1103/PhysRevLett.80.5381 Boettger JC, 1998, J PHYS-CONDENS MAT, V10, P893, DOI 10.1088/0953-8984/10/4/017 Altfeder IB, 1997, PHYS REV LETT, V78, P2815, DOI 10.1103/PhysRevLett.78.2815 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 WEITERING HH, 1992, PHYS REV B, V45, P5991, DOI 10.1103/PhysRevB.45.5991 ZANGWILL A, 1988, PHYSICS SURFACES CRACKNELL AP, 1984, METALS PHONON EL 13C, V3, P275 KNIGHT WD, 1984, PHYS REV LETT, V52, P2141, DOI 10.1103/PhysRevLett.52.2141Hong, HW Wei, CM Chou, MY Wu, Z Basile, L Chen, H Holt, M Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

2002

Abstract:

n/a

Notes:

ISI Document Delivery No.: 544ZQTimes Cited: 3Cited Reference Count: 4Cited References: PETERSEN I, 2002, PHYS REV LETT, V8818, P9701 Kidd TE, 2000, PHYS REV LETT, V85, P3684, DOI 10.1103/PhysRevLett.85.3684 Melechko AV, 2000, PHYS REV B, V61, P2235, DOI 

10.1103/PhysRevB.61.2235 Santoro G, 1999, PHYS REV B, V59, P1891, DOI 

10.1103/PhysRevB.59.1891Kidd, TE Miller, T Chou, MY Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

Angle-resolved photoemission is employed to measure the band structure of TiSe2 in order to clarify the nature of the (2x2x2 ) charge density wave transition. The results show a very small indirect gap in the normal phase transforming into a larger indirect gap at a different location in the Brillouin zone. Fermi surface topology is irrelevant in this case. Instead, electron-hole coupling together with a novel indirect Jahn-Teller effect drives the transition.

Notes:

ISI Document Delivery No.: 553ZWTimes Cited: 47Cited Reference Count: 18Cited References: Holt M, 2001, PHYS REV LETT, V86, P3799, DOI 10.1103/PhysRevLett.86.3799 Pillo T, 2000, PHYS REV B, V61, P16213, DOI 10.1103/PhysRevB.61.16213 PEHLKE E, 1990, PHYS REV B, V41, P2982, DOI 10.1103/PhysRevB.41.2982 GORKOV L, 1989, CHARGE DENSITY WAVES MOTIZUKI K, 1986, STRUCTURAL PHASE TRA ANDERSON O, 1985, PHYS REV LETT, V55, P2188, DOI 10.1103/PhysRevLett.55.2188 BENESH GA, 1985, J PHYS C SOLID STATE, V18, P1595, DOI 10.1088/0022-3719/18/8/007 KARSCHNICK G, 1985, SURF SCI, V155, P46, DOI 10.1016/0039-6028(85)90403-0 STOFFEL NG, 1985, PHYS REV B, V31, P8049, DOI 10.1103/PhysRevB.31.8049 TRAUM MM, 1978, PHYS REV B, V17, P1836, DOI 10.1103/PhysRevB.17.1836 ZUNGER A, 1978, PHYS REV B, V17, P1839, DOI 10.1103/PhysRevB.17.1839 HUGHES HP, 1977, J PHYS C SOLID STATE, V10, pL319, DOI 10.1088/0022-3719/10/11/009 WHITE RM, 1977, NUOVO CIMENTO B, V38, P280, DOI 10.1007/BF02723497 DISALVO FJ, 1976, PHYS REV B, V14, P4321, DOI 10.1103/PhysRevB.14.4321 WILSON JA, 1975, ADV PHYS, V24, P117, DOI 10.1080/00018737500101391 WILSON JA, 1969, ADV PHYS, V18, P193, DOI 10.1080/00018736900101307 KOHN W, 1967, PHYS REV LETT, V19, P439, DOI 10.1103/PhysRevLett.19.439 KNOX RS, 1963, SOLID STATE PHYS S, V5, P100Kidd, TE Miller, T Chou, MY Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

One third of a monolayer of Sn adsorbed on Ge(111) undergoes a broad phase transition upon cooling from a (root3 x root3)R30degrees normal phase at room temperature to a (3 x 3) phase at low temperatures. Since band-structure calculations for the ideal (root3 x root3)R30degrees phase show no Fermi-surface nesting, the underlying mechanism for this transition has been a subject of much debate. Evidently, defects formed by Ge substitution for Sn in the adlayer, at a concentration of just a few percent, play a key role in this complex phase transition. Surface areas near these defects are pinned to form (3 x 3) patches above the transition temperature. Angle-resolved photoemission is employed to examine the temperature-dependent band structure, and the results show an extended gap forming in k-space as a result of band splitting at low temperatures. On account of the fact that the room temperature phase is actually a mixture of (root3 x root3)R30degrees areas and defect-pinned (3 x 3) areas, the band structure for the pure (root3 x root3)R30degrees phase is extracted by a difference-spectrum method. The results are in excellent agreement with band calculations. The mechanism for the (3 x 3) transition is discussed in terms of a response function and a tight-binding cluster calculation. A narrow bandwidth and a small group velocity near the Fermi surface render the system highly sensitive to surface perturbations, and formation of the (3 x 3) phase is shown to involve a Peierls-like lattice distortion mediated by defect doping. Included in the discussion, where appropriate, are dynamic effects and many-body effects that have been previously proposed as possible mechanisms for the phase transition.

Notes:

ISI Document Delivery No.: 520YRTimes Cited: 12Cited Reference Count: 31Cited References: Perez R, 2001, PHYS REV LETT, V86, P4891, DOI 10.1103/PhysRevLett.86.4891 Rad MG, 2001, SURF SCI, V477, P227 Petaccia L, 2001, PHYS REV B, V63, part. no., DOI 10.1103/PhysRevB.63.115406 ASENSIO MC, 2001, UNPUB ASENSIO MC, 2001, B AM PHYS SOC, V46, P849 OKASINSKI JS, 2001, UNPUB OKASINSKI JS, 2001, B AM PHYS SOC, V46, P374 Kidd TE, 2000, PHYS REV LETT, V85, P3684, DOI 10.1103/PhysRevLett.85.3684 Perez R, 2000, APPL SURF SCI, V166, P45, DOI 10.1016/S0169-4332(00)00418-9 Gonzalez J, 2000, PHYS REV B, V62, P6928, DOI 10.1103/PhysRevB.62.6928 Avila J, 2000, APPL SURF SCI, V162, P48, DOI 10.1016/S0169-4332(00)00169-0 Uhrberg RIG, 2000, PHYS REV LETT, V85, P1036, DOI 10.1103/PhysRevLett.85.1036 Kidd TE, 2000, PHYS REV LETT, V84, P3023, DOI 10.1103/PhysRevLett.84.3023 Melechko AV, 2000, PHYS REV B, V61, P2235, DOI 10.1103/PhysRevB.61.2235 Ortega J, 2000, J PHYS-CONDENS MAT, V12, pL21, DOI 10.1088/0953-8984/12/1/104 Kidd TE, 1999, PHYS REV LETT, V83, P2789, DOI 10.1103/PhysRevLett.83.2789 Weitering HH, 1999, SCIENCE, V285, P2107, DOI 10.1126/science.285.5436.2107 Bunk O, 1999, PHYS REV LETT, V83, P2226, DOI 10.1103/PhysRevLett.83.2226 Melechko AV, 1999, PHYS REV LETT, V83, P999, DOI 10.1103/PhysRevLett.83.999 Zhang JD, 1999, PHYS REV B, V60, P2860, DOI 10.1103/PhysRevB.60.2860 Flores F, 1999, SURF REV LETT, V6, P411, DOI 10.1142/S0218625X99000421 Santoro G, 1999, PHYS REV B, V59, P1891, DOI 10.1103/PhysRevB.59.1891 Avila J, 1999, PHYS REV LETT, V82, P442, DOI 10.1103/PhysRevLett.82.442 *US DEP EN OFF SCI, 1999, COMPL SYST SCI 21 CE Uhrberg RIG, 1998, PHYS REV LETT, V81, P2108, DOI 10.1103/PhysRevLett.81.2108 Le Lay G, 1998, APPL SURF SCI, V123, P440, DOI 10.1016/S0169-4332(97)00470-4 Goldoni A, 1997, PHYS REV LETT, V79, P3266, DOI 10.1103/PhysRevLett.79.3266 Carpinelli JM, 1997, PHYS REV LETT, V79, P2859, DOI 10.1103/PhysRevLett.79.2859 Carpinelli JM, 1996, NATURE, V381, P398, DOI 10.1038/381398a0 GORKOV L, 1989, CHARGE DENSITY WAVES AVILA J, UNPUBChiang, TC Chou, MY Kidd, T Miller, TIOP PUBLISHING LTDBRISTOL

Chiang, TC, Chou MY, Kidd T, Miller T.  2002.  Fermi surfaces and energy gaps in Sn/Ge(111), Jan. Journal of Physics-Condensed Matter. 14:R1-R20., Number 1 Website 

Abstract:

One third of a monolayer of Sn adsorbed on Ge(111) undergoes a broad phase transition upon cooling from a (root3 x root3)R30degrees normal phase at room temperature to a (3 x 3) phase at low temperatures. Since band-structure calculations for the ideal (root3 x root3)R30degrees phase show no Fermi-surface nesting, the underlying mechanism for this transition has been a subject of much debate. Evidently, defects formed by Ge substitution for Sn in the adlayer, at a concentration of just a few percent, play a key role in this complex phase transition. Surface areas near these defects are pinned to form (3 x 3) patches above the transition temperature. Angle-resolved photoemission is employed to examine the temperature-dependent band structure, and the results show an extended gap forming in k-space as a result of band splitting at low temperatures. On account of the fact that the room temperature phase is actually a mixture of (root3 x root3)R30degrees areas and defect-pinned (3 x 3) areas, the band structure for the pure (root3 x root3)R30degrees phase is extracted by a difference-spectrum method. The results are in excellent agreement with band calculations. The mechanism for the (3 x 3) transition is discussed in terms of a response function and a tight-binding cluster calculation. A narrow bandwidth and a small group velocity near the Fermi surface render the system highly sensitive to surface perturbations, and formation of the (3 x 3) phase is shown to involve a Peierls-like lattice distortion mediated by defect doping. Included in the discussion, where appropriate, are dynamic effects and many-body effects that have been previously proposed as possible mechanisms for the phase transition.

Notes:

ISI Document Delivery No.: 520YRTimes Cited: 12Cited Reference Count: 31Cited References: Perez R, 2001, PHYS REV LETT, V86, P4891, DOI 10.1103/PhysRevLett.86.4891 Rad MG, 2001, SURF SCI, V477, P227 Petaccia L, 2001, PHYS REV B, V63, part. no., DOI 10.1103/PhysRevB.63.115406 ASENSIO MC, 2001, UNPUB ASENSIO MC, 2001, B AM PHYS SOC, V46, P849 OKASINSKI JS, 2001, UNPUB OKASINSKI JS, 2001, B AM PHYS SOC, V46, P374 Kidd TE, 2000, PHYS REV LETT, V85, P3684, DOI 

10.1103/PhysRevLett.85.3684 Perez R, 2000, APPL SURF SCI, V166, P45, DOI 10.1016/S0169-4332(00)00418-9 Gonzalez J, 2000, PHYS REV B, V62, P6928, DOI 

10.1103/PhysRevB.62.6928 Avila J, 2000, APPL SURF SCI, V162, P48, DOI 10.1016/S0169-4332(00)00169-0 Uhrberg RIG, 2000, PHYS REV LETT, V85, P1036, DOI 

10.1103/PhysRevLett.85.1036 Kidd TE, 2000, PHYS REV LETT, V84, P3023, DOI 10.1103/PhysRevLett.84.3023 Melechko AV, 2000, PHYS REV B, V61, P2235, DOI 

10.1103/PhysRevB.61.2235 Ortega J, 2000, J PHYS-CONDENS MAT, V12, pL21, DOI 10.1088/0953-8984/12/1/104 Kidd TE, 1999, PHYS REV LETT, V83, P2789, DOI 

10.1103/PhysRevLett.83.2789 Weitering HH, 1999, SCIENCE, V285, P2107, DOI 10.1126/science.285.5436.2107 Bunk O, 1999, PHYS REV LETT, V83, P2226, DOI 

10.1103/PhysRevLett.83.2226 Melechko AV, 1999, PHYS REV LETT, V83, P999, DOI 10.1103/PhysRevLett.83.999 Zhang JD, 1999, PHYS REV B, V60, P2860, DOI 

10.1103/PhysRevB.60.2860 Flores F, 1999, SURF REV LETT, V6, P411, DOI 10.1142/S0218625X99000421 Santoro G, 1999, PHYS REV B, V59, P1891, DOI 

10.1103/PhysRevB.59.1891 Avila J, 1999, PHYS REV LETT, V82, P442, DOI 10.1103/PhysRevLett.82.442 *US DEP EN OFF SCI, 1999, COMPL SYST SCI 21 CE Uhrberg RIG, 

1998, PHYS REV LETT, V81, P2108, DOI 10.1103/PhysRevLett.81.2108 Le Lay G, 1998, APPL SURF SCI, V123, P440, DOI 10.1016/S0169-4332(97)00470-4 Goldoni A, 1997, PHYS REV LETT, V79, P3266, DOI 10.1103/PhysRevLett.79.3266 Carpinelli JM, 1997, PHYS REV LETT, V79, P2859, DOI 10.1103/PhysRevLett.79.2859 Carpinelli JM, 1996, NATURE, V381, P398, DOI 10.1038/381398a0 GORKOV L, 1989, CHARGE DENSITY WAVES AVILA J, UNPUBChiang, TC Chou, MY Kidd, T Miller, TIOP PUBLISHING LTDBRISTOL

Abstract:

The work function of atomically uniform Ag films grown on Fe(100) is measured as a function of film thickness. It shows layer-resolved variations as a result of quantum confinement of the valence electrons. A first-principles calculation reproduces the observed variations except for very thin films (one and two monolayers), and the differences can be attributed, in part, to strain effects caused by the lattice mismatch between Ag and Fe. These results illustrate the close interaction between interface effects and surface properties.

Notes:

ISI Document Delivery No.: 633JLTimes Cited: 46Cited Reference Count: 20Cited References: Tang HR, 2002, CHEM PHYS LETT, V355, P410, DOI 10.1016/S0009-2614(02)00252-X Paggel JJ, 2000, PHYS REV B, V61, P1804, DOI 10.1103/PhysRevB.61.1804 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 10.1016/S0167-5729(00)00006-6 Paggel JJ, 1999, PHYS REV LETT, V83, P1415, DOI 10.1103/PhysRevLett.83.1415 Kiejna A, 1999, SURF SCI, V432, P54, DOI 10.1016/S0039-6028(99)00510-5 Paggel JJ, 1999, SCIENCE, V283, P1709, DOI 

10.1126/science.283.5408.1709 Paggel JJ, 1998, PHYS REV LETT, V81, P5632, DOI 10.1103/PhysRevLett.81.5632 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 

10.1103/PhysRevB.54.11169 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245, DOI 10.1088/0953-8984/6/40/015 YOFFE AD, 1993, ADV PHYS, V42, P173, DOI 

10.1080/00018739300101484 SAALFRANK P, 1992, SURF SCI, V274, P449, DOI 10.1016/0039-6028(92)90850-6 PERDEW JP, 1991, ELECT STRUCTURE SOLI BATRA IP, 1986, PHYS REV B, V34, P8246, DOI 10.

1103/PhysRevB.34.8246 CIRACI S, 1986, PHYS REV B, V33, P4294, DOI 10.1103/PhysRevB.33.4294 FEIBELMAN PJ, 1984, PHYS REV B, V29, P6463, DOI 10.1103/PhysRevB.29.6463 FEIBELMAN PJ, 1983, PHYS REV B, V27, P1991, DOI 

10.1103/PhysRevB.27.1991 SCHULTE FK, 1976, SURF SCI, V55, P427, DOI 10.1016/0039-6028(76)90250-8 JAKLEVIC RC, 1975, PHYS REV B, V12, P4146, DOI 10.1103/PhysRevB.12.4146 JAKLEVIC RC, 1971, PHYS REV LETT, V26, P88, DOI 10.1103/PhysRevLett.26.88 Smoluchowski R, 1941, PHYS REV, V60, P661, DOI 10.1103/PhysRev.60.661Paggel, JJ Wei, CM Chou, MY Luh, DA Miller, T Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We have carried out first-principles calculations of Pb (111) films up to 25 monolayers to study the oscillatory quantum size effects exhibited in the surface energy and work function. These oscillations are correlated with the thickness dependence of the energies of confined electrons, which can be properly modeled by an energy-dependent phase shift of the electronic wave function upon reflection at the interface. It is found that a quantitative description of these quantum size effects requires a full consideration of the crystal band structure.

Notes:

ISI Document Delivery No.: 633JLTimes Cited: 162Cited Reference Count: 30Cited References: 

Otero R, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.115401 Altfeder IB, 2002, PHYS REV LETT, V88, DOI 

10.1103/PhysRevLett.88.206801 Feibelman PJ, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.129902 Hupalo M, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.205406 Hupalo M, 2001, SURF SCI, V493, P526, DOI

10.1016/S0039-6028(01)01262-6 Materzanini G, 2001, PHYS REV B, V63, DOI 

10.1103/PhysRevB.63.235405 Su WB, 2001, PHYS REV LETT, V86, P5116, DOI 

10.1103/PhysRevLett.86.5116 Yeh V, 2000, PHYS REV LETT, V85, P5158, DOI 

10.1103/PhysRevLett.85.5158 Budde K, 2000, PHYS REV B, V61, P10602 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 

10.1016/S0167-5729(00)00006-6 Kiejna A, 1999, SURF SCI, V432, P54, DOI 10.1016/S0039-6028(99)00510-5 Gavioli L, 1999, PHYS REV LETT, V82, P129, DOI

10.1103/PhysRevLett.82.129 Zhang ZY, 1998, PHYS REV LETT, V80, P5381, DOI 10.1103/PhysRevLett.80.5381 Altfeder IB, 1998, PHYS REV LETT, V80, P4895, DOI

10.1103/PhysRevLett.80.4895 Boettger JC, 1998, J PHYS-CONDENS MAT, V10, P893, DOI 10.1088/0953-8984/10/4/017 Wojciechowski KF, 1998, SURF SCI, V397, P53, DOI 10.1016/S0039-6028(97)00715-2 Altfeder IB, 1997, PHYS REV LETT, V78, P2815, DOI 10.1103/PhysRevLett.78.2815 Kresse G, 1996, PHYS REV B, V54, P11169, DOI

10.1103/PhysRevB.54.11169 Smith AR, 1996, SCIENCE, V273, P226, DOI 10.1126/science.273.5272.226 SAALFRANK P, 1992, SURF SCI, V274, P449, DOI

10.1016/0039-6028(92)90850-6 WEITERING HH, 1992, PHYS REV B, V45, P5991, DOI

10.1103/PhysRevB.45.5991 PERDEW JP, 1991, ELECT STRUCTURE SOLI VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI

10.1103/PhysRevB.41.7892 BATRA IP, 1986, PHYS REV B, V34, P8246, DOI 10.1103/PhysRevB.34.8246 CIRACI S, 1986, PHYS REV B, V33, P4294, DOI

10.1103/PhysRevB.33.4294 FEIBELMAN PJ, 1984, PHYS REV B, V29, P6463, DOI 10.1103/PhysRevB.29.6463 FEIBELMAN PJ, 1983, PHYS REV B, V27, P1991, DOI

10.1103/PhysRevB.27.1991 SCHULTE FK, 1977, PHYS STATUS SOLIDI B, V79, P149 SCHULTE FK, 1976, SURF SCI, V55, P427, DOI

10.1016/0039-6028(76)90250-8 MANS A, UNPUBWei, CM Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

2001

Abstract:

We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the variational Monte Carlo method and predicted by various density-functional models. Nonlocal density-averaging methods prove to be successful in correcting severe errors in the local-density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole. but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor-crystal environment, particularly within the Si bond. which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding-orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.

Notes:

ISI Document Delivery No.: 474ZGTimes Cited: 6Cited Reference Count: 55Cited References: Cancio AC, 2000, PHYS REV A, V62 Kurth S, 1999, PHYS REV B, V59, P10461, DOI 10.1103/PhysRevB.59.10461 Stadele M, 1999, PHYS REV B, V59, P10031, DOI 10.1103/PhysRevB.59.10031 Burke K, 1998, J CHEM PHYS, V109, P8161, DOI 10.1063/1.477479 Burke K, 1998, J CHEM PHYS, V109, P3760, DOI 10.1063/1.476976 Hood RQ, 1998, PHYS REV B, V57, P8972, DOI 10.1103/PhysRevB.57.8972 Mazin II, 1998, PHYS REV B, V57, P6879, DOI 10.1103/PhysRevB.57.6879 Marzari N, 1997, PHYS REV B, V56, P12847, DOI 10.1103/PhysRevB.56.12847 Stadele M, 1997, PHYS REV LETT, V79, P2089, DOI 10.1103/PhysRevLett.79.2089 Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Bylander DM, 1997, PHYS REV B, V55, P9432, DOI 10.1103/PhysRevB.55.9432 Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.78.1396 Williamson AJ, 1997, PHYS REV B, V55, pR4851 Perdew JP, 1996, PHYS REV B, V54, P16533, DOI 10.1103/PhysRevB.54.16533 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Charlesworth JPA, 1996, PHYS REV B, V53, P12666, DOI 10.1103/PhysRevB.53.12666 ALONSO JA, 1996, RECENT DEV APPL MODE ERNZERHOF M, 1996, DENSITY FUNCTIONAL T ERNZERHOF M, 1996, RECENT DEV APPL MODE LEVY M, 1996, RECENT DEV APPL MODE SAVIN A, 1996, RECENT DEV APPL MODE BYLANDER DM, 1995, PHYS REV LETT, V74, P3660, DOI 10.1103/PhysRevLett.74.3660 ORTIZ G, 1994, PHYS REV B, V50, P1391, DOI 10.1103/PhysRevB.50.1391 HAMMOND BL, 1994, MONTE CARLO METHODS SINGH DJ, 1993, PHYS REV B, V48, P14099, DOI 10.1103/PhysRevB.48.14099 BECKE AD, 1993, J CHEM PHYS, V98, P5648, DOI 10.1063/1.464913 BECKE AD, 1993, J CHEM PHYS, V98, P1372, DOI 10.1063/1.464304 LI Y, 1993, PHYS REV A, V47, P165, DOI 10.1103/PhysRevA.47.165 PERDEW JP, 1992, PHYS REV B, V46, P12947, DOI 10.1103/PhysRevB.46.12947 KRIEGER JB, 1992, PHYS REV A, V46, P5453, DOI 10.1103/PhysRevA.46.5453 LI Y, 1991, PHYS REV B, V44, P10437, DOI 10.1103/PhysRevB.44.10437 FULDE P, 1991, ELECT CORRELATIONS M PERDEW JP, 1991, ELECT STRUCTURE SOLI JONES RO, 1989, REV MOD PHYS, V61, P689, DOI 10.1103/RevModPhys.61.689 BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785 SAVIN A, 1988, INT J QUANTUM CHEM S, V22, P59 ZAK J, 1985, PHYS REV LETT, V54, P1075, DOI 10.1103/PhysRevLett.54.1075 HYBERTSEN MS, 1984, SOLID STATE COMMUN, V51, P451, DOI 10.1016/0038-1098(84)91011-1 LANGRETH DC, 1983, PHYS REV B, V28, P1809, DOI 10.1103/PhysRevB.28.1809 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 HARRISON WA, 1980, ELECT STRUCTURE PROP LANGRETH DC, 1980, PHYS REV B, V21, P5469, DOI 10.1103/PhysRevB.21.5469 GUNNARSSON O, 1979, PHYS REV B, V20, P3136, DOI 10.1103/PhysRevB.20.3136 ALONSO JA, 1978, PHYS REV B, V17, P3735, DOI 10.1103/PhysRevB.17.3735 ALONSO JA, 1977, SOLID STATE COMMUN, V24, P135, DOI 10.1016/0038-1098(77)90591-9 CEPERLEY D, 1977, PHYS REV B, V16, P3081, DOI 10.1103/PhysRevB.16.3081 GUNNARSSON O, 1976, PHYS REV B, V13, P4274, DOI 10.1103/PhysRevB.13.4274 TALMAN JD, 1976, PHYS REV A, V14, P36, DOI 10.1103/PhysRevA.14.36 LANGRETH DC, 1975, SOLID STATE COMMUN, V17, P1425, DOI 10.1016/0038-1098(75)90618-3 HARRIS J, 1974, J PHYS F MET PHYS, V4, P1170, DOI 10.1088/0305-4608/4/8/013 KOHN W, 1965, PHYS REV, V140, P1133 DESCLOIZEAUX J, 1963, PHYS REV, V129, P554 CANCIO AC, UNPUB PUZDER A, UNPUBCancio, AC Chou, MY Hood, RQAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We have studied the structural stability of thin silver films with thicknesses of N = 1 to 15 monolayers, deposited on an Fe(100) substrate. Photoemission spectroscopy results show that films of N = 1, 2, and 5 monolayer thicknesses are structurally stable for temperatures above 800 kelvin, whereas films of other thicknesses are unstable and bifurcate into a film with N +/- 1 monolayer thicknesses at temperatures around 400 kelvin, The results are in agreement with theoretical predictions that consider the electronic energy of the quantum well associated with a particular film thickness as a significant contribution-to the film stability.

Notes:

ISI Document Delivery No.: 431AFTimes Cited: 111Cited Reference Count: 14Cited References: Kondo Y, 2000, SCIENCE, V289, P606, DOI 10.1126/science.289.5479.606 Tosatti E, 2000, SCIENCE, V289, P561, DOI 10.1126/science.289.5479.561 Paggel JJ, 2000, PHYS REV B, V61, P1804, DOI 10.1103/PhysRevB.61.1804 Chiang TC, 2000, SURF SCI REP, V39, P181, DOI 10.1016/S0167-5729(00)00006-6 Yanson AI, 1999, NATURE, V400, P144 Paggel JJ, 1999, SCIENCE, V283, P1709, DOI 10.1126/science.283.5408.1709 ROCO MC, 1999, NANOTECHNOLOGY RES D Paggel JJ, 1998, PHYS REV LETT, V81, P5632, DOI 10.1103/PhysRevLett.81.5632 Zhang ZY, 1998, PHYS REV LETT, V80, P5381, DOI 10.1103/PhysRevLett.80.5381 EVANS DA, 1997, SURF SCI, V376, P1 Smith AR, 1996, SCIENCE, V273, P226, DOI 10.1126/science.273.5272.226 KNIGHT WD, 1984, PHYS REV LETT, V52, P2141, DOI 10.1103/PhysRevLett.52.2141 KUMIKOV VK, 1983, J APPL PHYS, V54, P1346, DOI 10.1063/1.332209 SMITH NV, 1974, PHYS REV B, V9, P1341, DOI 10.1103/PhysRevB.9.1341Luh, DA Miller, T Paggel, JJ Chou, MY Chiang, TCAMER ASSOC ADVANCEMENT SCIENCEWASHINGTON

Abstract:

We have studied the pair-correlation function, the exchange-correlation hole, and the exchange-correlation energy density of the valence electrons in the Si atom using the Coulomb-coupling constant integration technique with the variational quantum Monte Carlo method. These quantities are compared to those derived from various approximate models within the Kohn-Sham density functional theory. We find that the charge density prefactor in the expression for the exchange-correlation hole dominates the errors found in the local spin density approximation (LSDA), that the generalized gradient approximation improves energy calculations by improving the LSDA at long ranges, and that the weighted spin density approximation, which uses the correct charge density prefactor, gives the lowest root mean square error for the exchange-correlation energy density.

Notes:

ISI Document Delivery No.: 460FJTimes Cited: 7Cited Reference Count: 58Cited References: Schmidt K, 2000, PHYS REV B, V62, P2227, DOI 10.1103/PhysRevB.62.2227 Marzari N, 2000, J PHYS CHEM SOLIDS, V61, P321, DOI 10.1016/S0022-3697(99)00301-7 Huang CJ, 1998, J CHEM PHYS, V108, P8838, DOI 10.1063/1.476330 Hood RQ, 1998, PHYS REV B, V57, P8972, DOI 10.1103/PhysRevB.57.8972 Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Singh DJ, 1997, FERROELECTRICS, V194, P299, DOI 10.1080/00150199708016101 Perdew JP, 1996, PHYS REV B, V54, P16533, DOI 10.1103/PhysRevB.54.16533 Sadd M, 1996, PHYS REV B, V54, P13643, DOI 10.1103/PhysRevB.54.13643 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Ernzerhof M, 1996, J CHEM PHYS, V105, P2798, DOI 10.1063/1.472142 FILIPPI C, 1996, RECENT DEV APPL MODE SAVIN A, 1996, RECENT DEV APPL MODE RAJAGOPAL AK, 1995, PHYS REV A, V51, P1770, DOI 10.1103/PhysRevA.51.1770 UMRIGAR CJ, 1994, PHYS REV A, V50, P3827, DOI 10.1103/PhysRevA.50.3827 GRITSENKO OV, 1993, PHYS REV A, V48, P4197, DOI 10.1103/PhysRevA.48.4197 SINGH DJ, 1993, PHYS REV B, V48, P14099, DOI 10.1103/PhysRevB.48.14099 ENGEL E, 1993, PHYS REV B, V47, P13164, DOI 10.1103/PhysRevB.47.13164 GORLING A, 1993, PHYS REV B, V47, P13105, DOI 10.1103/PhysRevB.47.13105 GLOSSMAN MD, 1993, PHYS REV A, V47, P1804, DOI 10.1103/PhysRevA.47.1804 UMRIGAR CJ, 1993, HIGH PERFORMANCE COM PERDEW JP, 1992, PHYS REV B, V46, P12947, DOI 10.1103/PhysRevB.46.12947 MITAS L, 1991, J CHEM PHYS, V95, P3467 PERDEW JP, 1991, ELECT STRUCTURE SOLI, P11 SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172, DOI 10.1063/1.458750 BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 GROSS EKU, 1988, PHYS REV A, V37, P2805, DOI 10.1103/PhysRevA.37.2805 PERDEW JP, 1986, PHYS REV B, V33, P8800, DOI 10.1103/PhysRevB.33.8800 SAHNI V, 1986, PHYS REV B, V33, P3869, DOI 10.1103/PhysRevB.33.3869 CHASE MW, 1985, J PHYS CHEM REF D S1, V14, P535 LIEB EH, 1985, DENSITY FUNCTIONAL M, P31 HARRIS J, 1984, PHYS REV A, V29, P1648, DOI 10.1103/PhysRevA.29.1648 ENGLISCH H, 1983, PHYSICA A, V121, P253, DOI 10.1016/0378-4371(83)90254-6 LANGRETH DC, 1983, PHYS REV B, V28, P1809, DOI 10.1103/PhysRevB.28.1809 LIEB EH, 1983, INT J QUANTUM CHEM, V24, P243, DOI 10.1002/qua.560240302 LEVY M, 1982, PHYS REV A, V26, P1200, DOI 10.1103/PhysRevA.26.1200 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 GUNNARSSON O, 1980, PHYS SCRIPTA, V21, P394, DOI 10.1088/0031-8949/21/3-4/027 KERKER GP, 1980, J PHYS C SOLID STATE, V13, pL189, DOI 10.1088/0022-3719/13/9/004 VALONE SM, 1980, J CHEM PHYS, V73, P4653, DOI 10.1063/1.440656 GUNNARSSON O, 1979, PHYS REV B, V20, P3136, DOI 10.1103/PhysRevB.20.3136 LEVY M, 1979, P NATL ACAD SCI USA, V76, P6062, DOI 10.1073/pnas.76.12.6062 ALONSO JA, 1978, PHYS REV B, V17, P3735, DOI 10.1103/PhysRevB.17.3735 LANGRETH DC, 1977, PHYS REV B, V15, P2884, DOI 10.1103/PhysRevB.15.2884 GUNNARSSON O, 1976, PHYS REV B, V13, P4274, DOI 10.1103/PhysRevB.13.4274 HARRIS J, 1974, J PHYS F MET PHYS, V4, P1170, DOI 10.1088/0305-4608/4/8/013 RAJAGOPA.AK, 1973, PHYS REV B, V7, P1912, DOI 10.1103/PhysRevB.7.1912 PANT MM, 1972, SOLID STATE COMMUN, V10, P1157, DOI 10.1016/0038-1098(72)90934-9 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 STODDART JC, 1971, ANN PHYS-NEW YORK, V64, P174, DOI 10.1016/0003-4916(71)90283-1 BOYS SF, 1969, PROC R SOC LON SER-A, V310, P63, DOI 10.1098/rspa.1969.0062 HERMAN F, 1969, PHYS REV LETT, V22, P807, DOI 10.1103/PhysRevLett.22.807 MA SK, 1968, PHYS REV, V165, P18, DOI 10.1103/PhysRev.165.18 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 KATO T, 1957, COMMUN PUR APPL MATH, V10, P151, DOI 10.1002/cpa.3160100201 NEKOVEE M, UNPUB PUZDER A, UNPUBPuzder, A Chou, MY Hood, RQAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The charge-density-wave transition in TiSe2, which results in a commensurate (2 X 2 X 2) superlattice at temperatures below similar to 200 K, presumably involves softening of a zone-boundary phonon mode. For the first time, this phonon-softening behavior has been examined over a wide temperature range by synchroton x-ray thermal diffuse scattering.

Notes:

ISI Document Delivery No.: 426FCTimes Cited: 37Cited Reference Count: 20Cited References: Pillo T, 2000, PHYS REV B, V61, P16213, DOI 10.1103/PhysRevB.61.16213 Chou MY, 2000, PHYS REV LETT, V84, P3733, DOI 10.1103/PhysRevLett.84.3733 Holt M, 2000, PHYS REV LETT, V84, P3734, DOI 10.1103/PhysRevLett.84.3734 MINOR W, 1989, PHYS REV B, V39, P1360, DOI 10.1103/PhysRevB.39.1360 WANG YR, 1989, PHYS REV B, V39, P1357, DOI 10.1103/PhysRevB.39.1357 GORKOV L, 1989, CHARGE DENSITY WAVES MOTIZUKI K, 1986, STRUCTURAL PHASE TRA ENZ CP, 1979, DYNAMIC CRITICAL PHE JASWAL SS, 1979, PHYS REV B, V20, P5297, DOI 10.1103/PhysRevB.20.5297 MONCTON DE, 1978, P INT C LATT DYN, P561 WAKABAYASHI N, 1978, SOLID STATE COMMUN, V28, P923, DOI 10.1016/0038-1098(78)90112-6 WILSON JA, 1978, PHYS STATUS SOLIDI B, V86, P11, DOI 10.1002/pssb.2220860102 HUGHES HP, 1977, J PHYS C SOLID STATE, V10, pL319, DOI 10.1088/0022-3719/10/11/009 WHITE RM, 1977, NUOVO CIMENTO B, V38, P280, DOI 10.1007/BF02723497 DISALVO FJ, 1976, PHYS REV B, V14, P4321, DOI 10.1103/PhysRevB.14.4321 STIRLING WG, 1976, SOLID STATE COMMUN, V18, P931, DOI 10.1016/0038-1098(76)90240-4 WOO KC, 1976, PHYS REV B, V14, P3242, DOI 10.1103/PhysRevB.14.3242 BHATT RN, 1975, PHYS REV B, V12, P2042, DOI 10.1103/PhysRevB.12.2042 WILSON JA, 1969, ADV PHYS, V18, P193, DOI 10.1080/00018736900101307 KOHN W, 1967, PHYS REV LETT, V19, P439, DOI 10.1103/PhysRevLett.19.439Holt, M Zschack, P Hong, H Chou, MY Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

2000

Abstract:

Angle-resolved photoemission has been utilized to study the surface electronic structure of 1/3 monolayer of Sn on Ge(lll) in both the room-temperature (root3 x root3)R30 degrees phase and the low-temperature (3 x 3) charge-density-wave phase. The results reveal a gap opening around the (3 x 3) Brillouin zone boundary, suggesting a Peierls-like transition despite the well-documented lack of Fermi nesting, a highly sensitive electronic response to doping by intrinsic surface defects is the cause for this unusual behavior, and a detailed calculation illustrates the origin of the (3 x 3) symmetry.

Notes:

ISI Document Delivery No.: 366GNTimes Cited: 32Cited Reference Count: 14Cited References: Melechko AV, 2000, PHYS REV B, V61, P2235, DOI 10.1103/PhysRevB.61.2235 Ortega J, 2000, J PHYS-CONDENS MAT, V12, pL21, DOI 10.1088/0953-8984/12/1/104 Kidd TE, 1999, PHYS REV LETT, V83, P2789, DOI 10.1103/PhysRevLett.83.2789 Weitering HH, 1999, SCIENCE, V285, P2107, DOI 10.1126/science.285.5436.2107 Bunk O, 1999, PHYS REV LETT, V83, P2226, DOI 10.1103/PhysRevLett.83.2226 Melechko AV, 1999, PHYS REV LETT, V83, P999, DOI 10.1103/PhysRevLett.83.999 Santoro G, 1999, PHYS REV B, V59, P1891, DOI 10.1103/PhysRevB.59.1891 Avila J, 1999, PHYS REV LETT, V82, P442, DOI 10.1103/PhysRevLett.82.442 *US DEP EN OFF SCI, 1999, COMPL SYST SCI 21 CE Uhrberg RIG, 1998, PHYS REV LETT, V81, P2108, DOI 10.1103/PhysRevLett.81.2108 Le Lay G, 1998, APPL SURF SCI, V123, P440, DOI 10.1016/S0169-4332(97)00470-4 Goldoni A, 1997, PHYS REV LETT, V79, P3266, DOI 10.1103/PhysRevLett.79.3266 Carpinelli JM, 1997, PHYS REV LETT, V79, P2859, DOI 10.1103/PhysRevLett.79.2859 Carpinelli JM, 1996, NATURE, V381, P398, DOI 10.1038/381398a0Kidd, TE Miller, T Chou, MY Chiang, TCAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

n/a

Notes:

ISI Document Delivery No.: 304VHTimes Cited: 6Cited Reference Count: 5Cited References: Holt M, 1999, PHYS REV LETT, V83, P3317, DOI 10.1103/PhysRevLett.83.3317 WEI SQ, 1994, PHYS REV B, V50, P2221, DOI 10.1103/PhysRevB.50.2221 WEI SQ, 1992, PHYS REV LETT, V69, P2799, DOI 10.1103/PhysRevLett.69.2799 COCHRAN W, 1963, REP PROG PHYS, V26, P1, DOI 10.1088/0034-4885/26/1/301 BORN M, 1942, REP PROG PHYS, V9, P294, DOI 10.1088/0034-4885/9/1/319Chou, MY Choi, MAMERICAN PHYSICAL SOCCOLLEGE PK