PUBLICATIONS

1998

Abstract:

When disilane (Si2H6) is used in the homoepitaxial growth of Si by chemical vapor deposition (CVD), the fragment SiH2 is believed to be the basic unit adsorbed on the surface. The bonding site of SiH2 on Si(100) has been proposed in the literature to be either on top of a dimer (the on-dimer site) or between two dimers in the same row (the intrarow site). Since the pathway of SiH2 combination is dependent on the adsorption site, a first-principles calculation will shed light on the underlying process. We have performed self-consistent pseudopotential density-functional calculations within the local-density approximation. On the bare Si(100) surface, the on-dimer site is found to be more stable than the intrarow site, even though the former has unfavorable Si-Si bond angles. This is ascribed to the extra dangling bond created in the latter geometry when the weak dimer a bonds are broken. However, the presence of hydrogen adatoms eliminates this difference and makes the intrarow site more favorable than the on-dimer site. It is therefore revealed in this theoretical study that hydrogen, an impurity unavoidable in the CVD process, plays an important role in determining the stable configuration of adsorbed SiH2 on Si(100) and hence affects the growth mechanism. [S0163-1829(98)52544-1].

Notes:

ISI Document Delivery No.: 143WFTimes Cited: 22Cited Reference Count: 17Cited References: Hong S, 1998, PHYS REV B, V57, P6262, DOI 10.1103/PhysRevB.57.6262 Bowler DR, 1996, SURF SCI, V360, pL489, DOI 10.1016/0039-6028(96)00730-3 Yamasaki T, 1996, PHYS REV LETT, V76, P2949, DOI 10.1103/PhysRevLett.76.2949 RAMSTAD A, 1995, PHYS REV B, V51, P14504, DOI 10.1103/PhysRevB.51.14504 WANG YJ, 1994, SURF SCI, V311, P64, DOI 10.1016/0039-6028(94)90481-2 VITTADINI A, 1994, PHYS REV B, V49, P11191, DOI 10.1103/PhysRevB.49.11191 BRONIKOWSKI MJ, 1993, SURF SCI, V298, P50, DOI 10.1016/0039-6028(93)90079-Y CHO K, 1993, PHYS REV LETT, V71, P1387, DOI 10.1103/PhysRevLett.71.1387 BROCKS G, 1992, SURF SCI, V269, P860, DOI 10.1016/0039-6028(92)91362-F LIU WK, 1992, SURF SCI, V264, P301, DOI 10.1016/0039-6028(92)90187-B BOLAND JJ, 1991, PHYS REV B, V44, P1383, DOI 10.1103/PhysRevB.44.1383 BROCKS G, 1991, PHYS REV LETT, V66, P1729, DOI 10.1103/PhysRevLett.66.1729 BOZSO F, 1991, PHYS REV B, V43, P1847, DOI 10.1103/PhysRevB.43.1847 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 ROBERTS N, 1990, SURF SCI, V236, P112, DOI 10.1016/0039-6028(90)90765-Z SUDA Y, 1990, J VAC SCI TECHNOL A, V8, P61, DOI 10.1116/1.576356 GATES SM, 1988, SURF SCI, V195, P307, DOI 10.1016/0039-6028(88)90798-4Hong, S Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

Using classical mechanical and quantum Monte Carlo methods we trace the ground-state behavior with an applied magnetic field of localized electron pair states in a quantum dot. By developing a method to treat nonconserved paramagnetic interactions using variational and diffusion quantum Monte Carlo techniques we find (i) a single-triplet transition at very small magnetic field strengths, (ii) enhanced localization of the two electrons with increasing magnetic field, and (iii) a mechanism for pair breakup that is different from that proposed recently by Wan et al. [Phys. Rev. Lett. 75, 2879 (1995)]. [S0163-1829(98)04016-8].

Notes:

ISI Document Delivery No.: ZP518Times Cited: 12Cited Reference Count: 12Cited References: Farrelly D, 1998, PHYS REV LETT, V80, P3884, DOI 10.1103/PhysRevLett.80.3884 Wan Y, 1997, PHYS REV LETT, V78, P3979, DOI 10.1103/PhysRevLett.78.3979 Jones MD, 1997, PHYS REV E, V55, P6202, DOI 10.1103/PhysRevE.55.6202 Cerjan C, 1997, PHYS REV A, V55, P2222, DOI 10.1103/PhysRevA.55.2222 Wan Y, 1997, PHYS REV B, V55, P5313, DOI 10.1103/PhysRevB.55.5313 RAIKH ME, 1997, PHYS REV LETT, V77, P3980 Raikh ME, 1996, PHYS REV LETT, V77, P1354, DOI 10.1103/PhysRevLett.77.1354 WAN Y, 1995, PHYS REV LETT, V75, P2879, DOI 10.1103/PhysRevLett.75.2879 ASHOORI RC, 1993, PHYSICA B, V184, P378, DOI 10.1016/0921-4526(93)90385-J PANG T, 1990, PHYS REV LETT, V65, P1635, DOI 10.1103/PhysRevLett.65.1635 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 HILL GW, 1878, AM J MATH, V1, P5, DOI 10.2307/2369430Lee, E Puzder, A Chou, MY Uzer, T Farrelly, DAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We have evaluated the surface free energies of hydrogen-covered (100), (111), and (110) surfaces of diamond and silicon as a function of the hydrogen chemical potential using first-principles methods. The change in surface-energy anisotropy and equilibrium crystal shape due to hydrogen adsorption is examined. The three low-index facets are affected differently by the presence of hydrogen and unexpected differences are found between diamond and silicon. Taking into account possible formation of local facets on the hydrogen-covered (100) surfaces, we find that the dihydride phase is not stable on both C(100) and Si(100). nor is the 3x1 phase on C(100).

Notes:

ISI Document Delivery No.: ZD807Times Cited: 35Cited Reference Count: 28Cited References: Stumpf R, 1997, PHYS REV LETT, V78, P4454, DOI 10.1103/PhysRevLett.78.4454 Cheng CL, 1997, PHYS REV LETT, V78, P3713, DOI 10.1103/PhysRevLett.78.3713 Hong S, 1997, PHYS REV B, V55, P9975, DOI 10.1103/PhysRevB.55.9975 Kern G, 1996, SURF SCI, V366, P445, DOI 10.1016/0039-6028(96)00837-0 HornvonHoegen M, 1996, PHYS REV LETT, V76, P2953, DOI 10.1103/PhysRevLett.76.2953 Qin XR, 1996, PHYS REV B, V53, P11100, DOI 10.1103/PhysRevB.53.11100 HORNVONHOEGEN M, 1995, SURF SCI, V337, pL777, DOI 10.1016/0039-6028(95)80036-0 KUTTEL OM, 1995, SURF SCI, V337, pL812, DOI 10.1016/0039-6028(95)80041-7 VASEK JE, 1995, PHYS REV B, V51, P17207, DOI 10.1103/PhysRevB.51.17207 THOMS BD, 1995, SURF SCI, V328, P291, DOI 10.1016/0039-6028(95)00039-9 COPEL M, 1994, PHYS REV LETT, V72, P1236, DOI 10.1103/PhysRevLett.72.1236 ADAMS DP, 1993, APPL PHYS LETT, V63, P3571, DOI 10.1063/1.110100 EAGLESHAM DJ, 1993, J APPL PHYS, V74, P6615, DOI 10.1063/1.355101 HORNVONHOEGEN M, 1993, PHYS REV LETT, V71, P3170, DOI 10.1103/PhysRevLett.71.3170 ROSENFELD G, 1993, PHYS REV LETT, V71, P895, DOI 10.1103/PhysRevLett.71.895 MADEY TE, 1993, SURF SCI, V287, P826, DOI 10.1016/0039-6028(93)91081-Y EAGLESHAM DJ, 1993, PHYS REV LETT, V70, P1643, DOI 10.1103/PhysRevLett.70.1643 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335, DOI 10.1103/PhysRevLett.68.3335 BROMMER KD, 1992, PHYS REV LETT, V68, P1355, DOI 10.1103/PhysRevLett.68.1355 BOLAND JJ, 1992, SURF SCI, V261, P17, DOI 10.1016/0039-6028(92)90214-Q CHIN RP, 1992, PHYS REV B, V45, P1522, DOI 10.1103/PhysRevB.45.1522 NORTHRUP JE, 1991, PHYS REV B, V44, P1419, DOI 10.1103/PhysRevB.44.1419 BOLAND JJ, 1990, PHYS REV LETT, V65, P3325, DOI 10.1103/PhysRevLett.65.3325 DUMAS P, 1990, PHYS REV LETT, V65, P1124, DOI 10.1103/PhysRevLett.65.1124 HIGASHI GS, 1990, APPL PHYS LETT, V56, P656, DOI 10.1063/1.102728 COPEL M, 1989, PHYS REV LETT, V63, P632, DOI 10.1103/PhysRevLett.63.632 CHABAL YJ, 1985, PHYS REV LETT, V54, P1055, DOI 10.1103/PhysRevLett.54.1055 LURIE PG, 1977, SURF SCI, V65, P453, DOI 10.1016/0039-6028(77)90459-9Hong, S Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

A combination of the coupling constant integration technique and the quantum Monte Carlo method is used to investigate the most relevant quantities in Kohn-Sham density-functional theory. Variational quantum Monte Carlo is used to construct realistic many-body wave functions for diamond-structure silicon at different values of the Coulomb coupling constant. The exchange-correlation energy density along with the coupling constant dependence and the coupling-constant-integrated form of the pair-correlation function, the exchange-correlation hole, and the exchange-correlation energy are presented. Comparisons of these functions an mode with results obtained from the local-density approximation, the average density approximation, the weighted density approximation, and the generalized gradient approximation. We discuss reasons for the success of the local-density approximation. The insights provided by this approach will make it possible to carry out stringent tests of the effectiveness of exchange-correlation functionals and in the long term aid in the search for better functionals. [S0163-1829(98)02115-8].

Notes:

ISI Document Delivery No.: ZJ480Times Cited: 33Cited Reference Count: 35Cited References: Zuo JM, 1997, J PHYS-CONDENS MAT, V9, P7541, DOI 10.1088/0953-8984/9/36/004 Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Gorling A, 1997, J CHEM PHYS, V106, P2675 Williamson AJ, 1997, PHYS REV B, V55, pR4851 Filippi C, 1996, PHYS REV A, V54, P4810, DOI 10.1103/PhysRevA.54.4810 Williamson AJ, 1996, PHYS REV B, V53, P9640, DOI 10.1103/PhysRevB.53.9640 Gorling A, 1996, PHYS REV B, V53, P7024, DOI 10.1103/PhysRevB.53.7024 Fraser LM, 1996, PHYS REV B, V53, P1814, DOI 10.1103/PhysRevB.53.1814 FILIPPI C, 1996, RECENT DEV APPL MODE GRABO T, 1995, CHEM PHYS LETT, V240, P141, DOI 10.1016/0009-2614(95)00500-4 ENGEL GE, 1995, PHYS REV B, V51, P13538, DOI 10.1103/PhysRevB.51.13538 HAMMOND BL, 1994, MONTE CARLO METHODS GORLING A, 1993, PHYS REV B, V47, P13105, DOI 10.1103/PhysRevB.47.13105 LU ZW, 1993, PHYS REV B, V47, P9385, DOI 10.1103/PhysRevB.47.9385 BECKE AD, 1993, J CHEM PHYS, V98, P1372, DOI 10.1063/1.464304 UMRIGAR CJ, 1993, HIGH PERFORMANCE COM PERDEW JP, 1992, PHYS REV B, V46, P12947, DOI 10.1103/PhysRevB.46.12947 KNORR W, 1992, PHYS REV LETT, V68, P639, DOI 10.1103/PhysRevLett.68.639 PERDEW JP, 1991, ELECT STRUCTURE SOLI FAHY S, 1990, PHYS REV LETT, V65, P1478, DOI 10.1103/PhysRevLett.65.1478 FAHY S, 1990, PHYS REV B, V42, P3503, DOI 10.1103/PhysRevB.42.3503 DREIZLER RM, 1990, DENSITY FUNCTIONAL T, P183 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 BECKE AD, 1988, J CHEM PHYS, V88, P1053, DOI 10.1063/1.454274 SAHNI V, 1986, PHYS REV B, V33, P3869, DOI 10.1103/PhysRevB.33.3869 LEVY M, 1985, PHYS REV A, V32, P2010, DOI 10.1103/PhysRevA.32.2010 CORNWELL JF, 1984, GROUP THEORY PHYSICS, V1, P222 CORNWELL JF, 1984, GROUP THEORY PHYSICS, V1, P81 CEPERLEY DM, 1979, MONTE CARLO METH, P183 GUNNARSSON O, 1979, PHYS REV B, V20, P3136, DOI 10.1103/PhysRevB.20.3136 RAJAGOPAL AK, 1978, PHYS REV B, V18, P2339, DOI 10.1103/PhysRevB.18.2339 CEPERLEY D, 1977, PHYS REV B, V16, P3081, DOI 10.1103/PhysRevB.16.3081 CORNWELL JF, 1969, GROUP THEORY ELECT E, P137 NEKOVEE M, IN PRESS ADV QUANTUM PERDEW JP, UNPUBHood, RQ Chou, MY Williamson, AJ Rajagopal, G Needs, RJAMERICAN PHYSICAL SOCCOLLEGE PK

1997

Abstract:

A model interaction is introduced for quantum many-body simulations of Coulomb systems using periodic I boundary conditions. The interaction gives much smaller finite size effects than the standard Ewald interaction and is also much faster to compute. Variational quantum Monte Carlo simulations of diamond-structure silicon with up to 1000 electrons demonstrate the effectiveness of our method.

Notes:

ISI Document Delivery No.: WL499Times Cited: 42Cited Reference Count: 15Cited References: Williamson AJ, 1996, PHYS REV B, V53, P9640, DOI 10.1103/PhysRevB.53.9640 Fraser LM, 1996, PHYS REV B, V53, P1814, DOI 10.1103/PhysRevB.53.1814 RAJAGOPAL G, 1995, PHYS REV B, V51, P10591, DOI 10.1103/PhysRevB.51.10591 RAJAGOPAL G, 1994, PHYS REV LETT, V73, P1959, DOI 10.1103/PhysRevLett.73.1959 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 CEPERLEY DM, 1987, PHYS REV B, V36, P2092, DOI 10.1103/PhysRevB.36.2092 SCHMIDT KE, 1984, MONTE CARLO METHODS, V2 DELEEUW SW, 1980, P ROY SOC LOND A MAT, V373, P27, DOI 10.1098/rspa.1980.0135 CEPERLEY D, 1979, MONTE CARLO METHODS CEPERLEY D, 1977, PHYS REV B, V16, P3081, DOI 10.1103/PhysRevB.16.3081 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 BALDERES.A, 1973, PHYS REV B, V7, P5212, DOI 10.1103/PhysRevB.7.5212 HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796 MCMILLAN WL, 1965, PHYS REV, V138, pA442, DOI 10.1103/PhysRev.138.A442 Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253Williamson, AJ Rajagopal, G Needs, RJ Fraser, LM Foulkes, WMC Wang, Y Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

This paper gives a brief overview of the capability of modern electron-structure calculations, the widely used density-functional theory, and the challenge to search for the exact nonlocal exchange-correlation functional. The study of the thermal properties of silicon is used as an example to illustrate the accuracy accomplished by the state-of-the-art first-principles calculations. A recent attempt to extract quantities of central importance in density function theory via computational many-body techniques is also discussed.

Notes:

ISI Document Delivery No.: XR077Times Cited: 0Cited Reference Count: 21Cited References: Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 WEI SQ, 1994, PHYS REV B, V50, P14587, DOI 10.1103/PhysRevB.50.14587 WEI SQ, 1994, PHYS REV B, V50, P2221, DOI 10.1103/PhysRevB.50.2221 WEI SQ, 1992, PHYS REV LETT, V69, P2799, DOI 10.1103/PhysRevLett.69.2799 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 DREIZLER RM, 1990, DENSITY FUNCTIONAL M CAR R, 1985, PHYS REV LETT, V55, P2471, DOI 10.1103/PhysRevLett.55.2471 YIN MT, 1982, PHYS REV B, V26, P5668, DOI 10.1103/PhysRevB.26.5668 YIN MT, 1980, PHYS REV LETT, V45, P1004, DOI 10.1103/PhysRevLett.45.1004 BOYER LL, 1979, PHYS REV LETT, V42, P584, DOI 10.1103/PhysRevLett.42.584 HAMANN DR, 1979, PHYS REV LETT, V43, P1494, DOI 10.1103/PhysRevLett.43.1494 LYON KG, 1977, J APPL PHYS, V48, P865, DOI 10.1063/1.323747 ASHCROFT NW, 1976, SOLID STATE PHYS, P492 IBACH H, 1969, PHYS STATUS SOLIDI, V31, P625, DOI 10.1002/pssb.19690310224 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, P864 LEIBFRIED G, 1961, SOLID STATE PHYS, V12, P275 LANDAU LD, 1959, ZH EKSP TEOR FIZ, V8, P70 LANDAU LD, 1957, ZH EKSP TEOR FIZ, V5, P101 LANDAU LD, 1957, ZH EKSP TEOR FIZ, V3, P920Chou, MYSymposium on Contemporary PhysicsDEC 28-30, 1996TAIPEI, TAIWANPHYSICAL SOC REPUBLIC CHINATAIPEI

Abstract:

Realistic many-body wave functions for diamond-structure silicon are constructed for different values of the Coulomb coupling constant. The coupling-constant-integrated pair correlation function, the exchange-correlation hole, and the exchange-correlation energy density are calculated and compared with those obtained from the local density and average density approximations. We draw conclusions about the reasons for the success of the local density approximation and suggest a method for testing the effectiveness of exchange-correlation functionals.

Notes:

ISI Document Delivery No.: WW399Times Cited: 51Cited Reference Count: 17Cited References: Williamson AJ, 1997, PHYS REV B, V55, pR4851 Williamson AJ, 1996, PHYS REV B, V53, P9640, DOI 10.1103/PhysRevB.53.9640 Fraser LM, 1996, PHYS REV B, V53, P1814, DOI 10.1103/PhysRevB.53.1814 GORLING A, 1993, PHYS REV B, V47, P13105, DOI 10.1103/PhysRevB.47.13105 LU ZW, 1993, PHYS REV B, V47, P9385, DOI 10.1103/PhysRevB.47.9385 PERDEW JP, 1992, PHYS REV B, V46, P12947, DOI 10.1103/PhysRevB.46.12947 PERDEW JP, 1991, ELECT STRUCTURE SOLI FAHY S, 1990, PHYS REV LETT, V65, P1478, DOI 10.1103/PhysRevLett.65.1478 FAHY S, 1990, PHYS REV B, V42, P3503, DOI 10.1103/PhysRevB.42.3503 DREIZLER RM, 1990, DENSITY FUNCTIONAL T, P183 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 LEVY M, 1985, PHYS REV A, V32, P2010, DOI 10.1103/PhysRevA.32.2010 GUNNARSSON O, 1979, PHYS REV B, V20, P3136, DOI 10.1103/PhysRevB.20.3136 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 PERDEW JP, UNPUB PERDEW JP, COMMUNICATIONHood, RQ Chou, MY Williamson, AJ Rajagopal, G Needs, RJ Foulkes, WMCAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

n/a

Notes:

ISI Document Delivery No.: WP185Times Cited: 0Cited Reference Count: 0Foulkes, WMC Nekovee, M Hood, RQ Chou, MY Needs, RJ Rajagopal, G Williamson, AJAMER CHEMICAL SOCWASHINGTONPart 1

Abstract:

The bare and hydrogen-covered diamond (100) surfaces were investigated through pseudopotential density-functional calculations within the local-density approximation. Different hydrogen coverages, ranging from one to two, were considered. These corresponded to different structures (1x1, 2x1, and 3x1) and different hydrogen-carbon arrangements (monohydride, dihydride, and configurations in between). Assuming the system was in equilibrium with a hydrogen reservoir, the formation energy of each phase was expressed as a function of hydrogen chemical potential. As the chemical potential increased, the stable phase successively changed from bare 2x1 to (2x1):H, to (3x1):1.33H, and finally to the canted (1x1):2H. Setting the chemical potential at the energy per hydrogen in H-2 and in a free atom gave the (3x1):1.33H and the canted (1x1):2H phase as the most stable one, respectively. However, after comparing with the formation energy of CH4, only the (2x1):H and (3x1):1.33H phases were stable against spontaneous formation of CH4. The former existed over a chemical potential range ten times wider than the latter, which may explain why the latter, despite having a low energy, has not been observed so far. Finally, the vibrational energies of the C-H stretch mode were calculated for the (2x1):H phase.

Notes:

ISI Document Delivery No.: WV251Times Cited: 28Cited Reference Count: 43Cited References: Kwak KW, 1996, PHYS REV B, V53, P13734, DOI 10.1103/PhysRevB.53.13734 Furthmuller J, 1996, PHYS REV B, V53, P7334, DOI 10.1103/PhysRevB.53.7334 KAWARADA H, 1995, PHYS REV B, V52, P11351, DOI 10.1103/PhysRevB.52.11351 KUTTEL OM, 1995, SURF SCI, V337, pL812, DOI 10.1016/0039-6028(95)80041-7 ANZAI T, 1995, J MOL STRUCT, V352, P455, DOI 10.1016/0022-2860(94)08518-M ALFONSO DR, 1995, PHYS REV B, V51, P14669, DOI 10.1103/PhysRevB.51.14669 THOMS BD, 1995, SURF SCI, V328, P291, DOI 10.1016/0039-6028(95)00039-9 ZHANG Z, 1995, PHYS REV B, V51, P5291, DOI 10.1103/PhysRevB.51.5291 KRUGER P, 1995, PHYS REV LETT, V74, P1155, DOI 10.1103/PhysRevLett.74.1155 ALFONSO DR, 1995, PHYS REV B, V51, P1989, DOI 10.1103/PhysRevB.51.1989 FURTHMULLER J, 1994, EUROPHYS LETT, V28, P659, DOI 10.1209/0295-5075/28/9/008 KRESS C, 1994, PHYS REV B, V50, P17697, DOI 10.1103/PhysRevB.50.17697 THOMS BD, 1994, APPL PHYS LETT, V65, P2957, DOI 10.1063/1.112503 JING Z, 1994, SURF SCI, V314, P300, DOI 10.1016/0039-6028(94)90014-0 DAVIDSON BN, 1994, PHYS REV B, V49, P11253, DOI 10.1103/PhysRevB.49.11253 SKOKOV S, 1994, PHYS REV B, V49, P5662, DOI 10.1103/PhysRevB.49.5662 KRESSE G, 1994, J PHYS CONDENS MATT, V6, P8524 SPEAR KE, 1994, SYNTHETIC DIAMOND EM AIZAWA T, 1993, PHYS REV B, V48, P18348, DOI 10.1103/PhysRevB.48.18348 YANG SH, 1993, PHYS REV B, V48, P5261, DOI 10.1103/PhysRevB.48.5261 LEE ST, 1993, PHYS REV B, V48, P2684, DOI 10.1103/PhysRevB.48.2684 HANDY NC, 1993, J PHYS CHEM-US, V97, P4392, DOI 10.1021/j100119a023 NORTHRUP JE, 1993, PHYS REV B, V47, P10032, DOI 10.1103/PhysRevB.47.10032 BUTLER JE, 1993, PHILOS T ROY SOC A, V342, P209, DOI 10.1098/rsta.1993.0015 DAVIS RF, 1993, DIAMOND FILMS COATIN THOMAS RE, 1992, J VAC SCI TECHNOL A, V10, P2451, DOI 10.1116/1.577983 YANG YL, 1992, J VAC SCI TECHNOL A, V10, P978, DOI 10.1116/1.577890 SUTCU LF, 1992, APPL PHYS LETT, V60, P1685, DOI 10.1063/1.107237 ZHU XJ, 1992, PHYS REV B, V45, P3940, DOI 10.1103/PhysRevB.45.3940 ZHENG XM, 1991, SURF SCI, V256, P1, DOI 10.1016/0039-6028(91)91194-3 NORTHRUP JE, 1991, PHYS REV B, V44, P1419, DOI 10.1103/PhysRevB.44.1419 MEHANDRU SP, 1991, SURF SCI, V248, P369, DOI 10.1016/0039-6028(91)91183-X TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 CELII FG, 1991, ANNU REV PHYS CHEM, V42, P643, DOI 10.1146/annurev.physchem.42.1.643 BOLAND JJ, 1990, PHYS REV LETT, V65, P3325, DOI 10.1103/PhysRevLett.65.3325 HAMZA AV, 1990, SURF SCI, V237, P35, DOI 10.1016/0039-6028(90)90517-C VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 CHABAL YJ, 1985, PHYS REV LETT, V54, P1055, DOI 10.1103/PhysRevLett.54.1055 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566, 1972, AM I PHYSICS HDB, P175 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864Hong, S Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1996

Abstract:

We studied the hydrogen-induced reconstruction of the W(110) surface using the pseudopotential plane wave approach. The calculations for a full monolayer of hydrogen coverage showed that the quasithreefold hollow site (distorted bridge) has the lowest energy, and that for this geometry a surface reconstruction, consisting of a small uniform shift of the W top layer in the [1(1) over bar0$] direction, is energetically favorable. We also studied the surface states for clean and H-covered W(110) and investigated the effect of the reconstruction on electronic structure.

Notes:

ISI Document Delivery No.: UN909Times Cited: 16Cited Reference Count: 28Cited References: KOHLER B, 1995, PHYS REV LETT, V74, P1387, DOI 10.1103/PhysRevLett.74.1387 BALDEN M, 1994, SURF SCI, V309, P1141 HULPKE E, 1993, SURF SCI, V287, P837, DOI 10.1016/0039-6028(93)91083-2 HULPKE E, 1992, PHYS REV LETT, V68, P2846, DOI 10.1103/PhysRevLett.68.2846 SAAD Y, 1992, NUMERICAL METHODS LA TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 WATSON RE, 1991, PHYS REV B, V43, P1455, DOI 10.1103/PhysRevB.43.1455 GOLUB GH, 1990, MATRIX COMPUTATIONS JEONG K, 1989, J VAC SCI TECHNOL A, V7, P2199, DOI 10.1116/1.575957 GAYLORD RH, 1989, PHYS REV LETT, V62, P2036, DOI 10.1103/PhysRevLett.62.2036 GAYLORD RH, 1988, PHYS REV B, V37, P8491, DOI 10.1103/PhysRevB.37.8491 ALTMAN M, 1987, J VAC SCI TECHNOL A, V5, P1045, DOI 10.1116/1.574182 HERLT HJ, 1986, SURF SCI, V175, P336, DOI 10.1016/0039-6028(86)90240-2 CHUNG JW, 1986, PHYS REV LETT, V56, P749, DOI 10.1103/PhysRevLett.56.749 KITTEL C, 1986, INTRO SOLID STATE PH, P530 HOLLOWAY S, 1984, SURF SCI, V136, P59 JANSEN HJF, 1984, PHYS REV B, V30, P561, DOI 10.1103/PhysRevB.30.561 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 GONCHAR VV, 1983, ZH EKSP TEOR FIZ, V57, P142 BACHELET GB, 1982, PHYS REV B, V25, P2103, DOI 10.1103/PhysRevB.25.2103 BLANCHET GB, 1982, SURF SCI, V118, P496, DOI 10.1016/0039-6028(82)90201-1 DIFOGGIO R, 1982, PHYS REV B, V25, P3490, DOI 10.1103/PhysRevB.25.3490 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 DIFOGGIO R, 1980, PHYS REV LETT, V44, P1258, DOI 10.1103/PhysRevLett.44.1258 KLEINMAN L, 1980, PHYS REV B, V21, P2630, DOI 10.1103/PhysRevB.21.2630 WYCKOFF RWG, 1963, CRYST STRUCT, V1, P19 KWAK KD, UNPUBKwak, KW Chou, MY Troullier, NAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We studied total energies of various ordered structures of PdHx (in which hydrogen occupies the octahedral sites within the fee Pd lattice) using the pseudopotential method and a plane-wave basis within the local-density-functional approximation. The structures considered include the (420)-plane ordering of hydrogen atoms at different concentrations. For x greater than or equal to 1/2 we found that the NiMo- and Ni4Mo (D1(a))-type structures at x=1/2 and x=4/5, respectively, were energetically favored phases, in agreement with the superlattice reflections found in previous neutron-scattering measurements. For the intermediate concentrations, linear variation of the formation energy as a function of x in several (420)-ordered structures explained the observed short-range order. In contrast to an earlier proposal, we did not find the Fermi surface imaging effect responsible in this case. The overall energy variation in different phases indicates the importance of going beyond pairwise interactions between interstitial hydrogen atoms in this system.

Notes:

ISI Document Delivery No.: TR041Times Cited: 20Cited Reference Count: 43Cited References: SUN SN, 1994, PHYS REV B, V49, P6481, DOI 10.1103/PhysRevB.49.6481 ANDRE G, 1992, PHYS REV B, V46, P8644, DOI 10.1103/PhysRevB.46.8644 ELSASSER C, 1992, J PHYS-CONDENS MAT, V4, P5207, DOI 10.1088/0953-8984/4/22/018 KLEIN BM, 1992, PHYS REV B, V45, P12405, DOI 10.1103/PhysRevB.45.12405 LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512 ELSASSER C, 1991, PHYSICA B, V172, P217, DOI 10.1016/0921-4526(91)90434-G TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 ELSASSER C, 1991, PHYS REV B, V44, P1037 MANCHESTER FD, 1990, METAL HYDROGEN SYSTE LAM PK, 1989, PHYS REV LETT, V63, P1895, DOI 10.1103/PhysRevLett.63.1895 WANG XW, 1989, PHYS REV B, V40, P5822, DOI 10.1103/PhysRevB.40.5822 SUN Z, 1989, PHYS REV LETT, V63, P59, DOI 10.1103/PhysRevLett.63.59 SCHLAPBACH L, 1988, HYDROGEN INTERMETALL, V1 WEI SH, 1987, PHYS REV B, V36, P4163, DOI 10.1103/PhysRevB.36.4163 SWITENDICK AC, 1987, J LESS-COMMON MET, V130, P249, DOI 10.1016/0022-5088(87)90116-0 WICKE E, 1987, J LESS-COMMON MET, V130, P351, DOI 10.1016/0022-5088(87)90129-9 BLASCHKO O, 1984, J LESS-COMMON MET, V100, P307, DOI 10.1016/0022-5088(84)90071-7 BLASCHKO O, 1984, PHYS REV B, V29, P5187, DOI 10.1103/PhysRevB.29.5187 CHAN CT, 1983, PHYS REV B, V27, P3325, DOI 10.1103/PhysRevB.27.3325 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 BOND RA, 1982, J PHYS F MET PHYS, V12, P597, DOI 10.1088/0305-4608/12/4/003 BLASCHKO O, 1981, PHYS REV B, V24, P6486, DOI 10.1103/PhysRevB.24.6486 BLASCHKO O, 1981, PHYS REV B, V24, P277, DOI 10.1103/PhysRevB.24.277 ELLIS TE, 1979, PHYS REV LETT, V42, P456, DOI 10.1103/PhysRevLett.42.456 ALEFELD G, 1978, HYDROGEN METALS ALEFELD G, 1978, HYDROGEN METALS, V2, P73 ANDERSON IS, 1978, PHYS LETT A, V68, P249, DOI 10.1016/0375-9601(78)90819-8 ANDERSON IS, 1978, J PHYS C SOLID STATE, V11, pL381, DOI 10.1088/0022-3719/11/9/005 BEAUDRY BJ, 1978, HDB PHYSICS CHEM RAR KANAMORI J, 1977, J PHYSIQUE, V38, P274 JACOBS JK, 1976, J LESS-COMMON MET, V49, P67, DOI 10.1016/0022-5088(76)90026-6 JACOBS JK, 1972, BERICH BUNSEN GESELL, V76, P827 HEDIN L, 1971, J PHYS PART C SOLID, V4, P2064, DOI 10.1088/0022-3719/4/14/022 ZEPEDA S, 1971, J LOW TEMP PHYS, V4, P127, DOI 10.1007/BF00628385 HO NS, 1969, J CHEM PHYS, V51, P5437, DOI 10.1063/1.1671968 SKOSKIEW.T, 1968, PHYS STATUS SOLIDI, V30, pK33, DOI 10.1002/pssb.19680300155 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 HOHENBERG P, 1965, PHYS REV A, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 NACE DM, 1957, J AM CHEM SOC, V79, P3527 WORSHAM JE, 1957, J PHYS CHEM SOLIDS, V3, P303, DOI 10.1016/0022-3697(57)90033-1 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 SCHINDLER A, UNPUBWang, Y Sun, SN Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H-2 and O-2, using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically.

Notes:

ISI Document Delivery No.: UE190Times Cited: 59Cited Reference Count: 25Cited References: BRIGGS EL, 1995, PHYS REV B, V52, pR5471 GYGI F, 1995, PHYS REV B, V51, P11190, DOI 10.1103/PhysRevB.51.11190 HAMANN DR, 1995, PHYS REV B, V51, P9508, DOI 10.1103/PhysRevB.51.9508 HAMANN DR, 1995, PHYS REV B, V51, P7337, DOI 10.1103/PhysRevB.51.7337 ARIAS TA, 1995, TERAFLOP COMPUTING N, P23 CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355, DOI 10.1103/PhysRevB.50.11355 CHELIKOWSKY JR, 1994, PHYS REV LETT, V72, P1240, DOI 10.1103/PhysRevLett.72.1240 GYGI F, 1993, PHYS REV B, V48, P11692, DOI 10.1103/PhysRevB.48.11692 CHO K, 1993, PHYS REV LETT, V71, P1808, DOI 10.1103/PhysRevLett.71.1808 PAYNE MC, 1992, REV MOD PHYS, V64, P1045, DOI 10.1103/RevModPhys.64.1045 GYGI F, 1992, EUROPHYS LETT, V19, P617, DOI 10.1209/0295-5075/19/7/009 BEYLKIN G, 1992, SIAM J NUMER ANAL, V6, P1716 CHUI CK, 1992, INTRO WAVELETS DAUBECHIES I, 1992, SOC IND APPL MATH PRESS WH, 1992, NUMERICAL RECIPES FO, P584 TROULLIER N, 1991, PHYS REV B, V43, P8861, DOI 10.1103/PhysRevB.43.8861 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 MALLAT SG, 1989, T AM MATH SOC, V315, P69, DOI 10.2307/2001373 MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463 KLAUDER JR, 1985, COHERENT STATES KLEINMAN L, 1982, PHYS REV LETT, V48, P1425, DOI 10.1103/PhysRevLett.48.1425 KLEINMAN L, 1982, PHYS REV LETT, V48, P1425, DOI 10.1103/PhysRevLett.48.1425, 1972, AM I PHYSICS HDB, P7 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 ZUMBACH G, IN PRESSWei, SQ Chou, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1995

Abstract:

n/a

Notes:

ISI Document Delivery No.: QQ598Times Cited: 37Cited Reference Count: 24Cited References: WANG Y, 1993, PHYS REV LETT, V71, P1226, DOI 10.1103/PhysRevLett.71.1226 DEKKER JP, 1993, J PHYS-CONDENS MAT, V5, P4805, DOI 10.1088/0953-8984/5/27/025 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 INUI T, 1990, GROUP THEORY ITS APP, P371 FUJIMORI A, 1984, J PHYS C SOLID STATE, V17, P341, DOI 10.1088/0022-3719/17/2/021 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 SWITENDICK AC, 1980, J LESS-COMMON MET, V74, P199, DOI 10.1016/0022-5088(80)90090-9 LIBOWITZ GG, 1979, HDB PHYSICS CHEM RAR, V3, P299, DOI 10.1016/S0168-1273(79)03009-9 SWITENDICK AC, 1978, ADV CHEM SER, V167, P264 KOPAEV YV, 1975, T FIAN SSSR, V86, P3 CHAN SK, 1973, J PHYS F MET PHYS, V3, P795, DOI 10.1088/0305-4608/3/4/022 MIRON NF, 1972, SOV PHYS-CRYSTALLOGR, V17, P342 HALPERIN BI, 1968, SOLID STATE PHYS, V21, P116 DECLOIZEAUX J, 1965, J PHYS CHEM SOLIDS, V26, P259 KELDYSH LV, 1965, FIZ TVERD TELA+, V6, P2219 KOHN W, 1965, J PHYS REV A, V140, P1133 KOZLOV AN, 1965, ZH EKSP TEOR FIZ, V21, P790 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 MANSMANN M, 1964, J PHYS-PARIS, V25, P454, DOI 10.1051/jphys:01964002505045400 PEBLER A, 1962, J PHYS CHEM-US, V66, P148, DOI 10.1021/j100807a033 SPEDDING FH, 1956, ACTA CRYSTALLOGR, V9, P559, DOI 10.1107/S0365110X5600156X Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 UDOVIC TJ, UNPUBWANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1994

Abstract:

We show that the continuous feedback approach is highly effective for controlling chaotic systems. The control design for the Lorenz system is presented as an example to demonstrate the strength of this approach. The proposed control is able to eliminate chaos and bring the system toward any of the three steady states. Two different control input locations are considered. Only one system variable is used in the feedback. The control scheme can tolerate both measurement noise and modeling uncertainty as long as they are bounded.

Notes:

ISI Document Delivery No.: PJ443Times Cited: 23Cited Reference Count: 21Cited References: VIDYASAGAR M, 1993, NONLINEAR SYSTEMS AN, P178 GILLS Z, 1992, PHYS REV LETT, V69, P3169, DOI 10.1103/PhysRevLett.69.3169 CHEN YH, 1992, PHYS REV LETT, V69, P3128, DOI 10.1103/PhysRevLett.69.3128 WANG YZ, 1992, J FLUID MECH, V237, P479, DOI 10.1017/S0022112092003501 ROY R, 1992, PHYS REV LETT, V68, P1259, DOI 10.1103/PhysRevLett.68.1259 SINGER J, 1991, PHYS FLUIDS A-FLUID, V3, P2859, DOI 10.1063/1.857831 JACKSON EA, 1991, PHYS REV A, V44, P4839, DOI 10.1103/PhysRevA.44.4839 HUNT ER, 1991, PHYS REV LETT, V67, P1953, DOI 10.1103/PhysRevLett.67.1953 SINGER J, 1991, PHYS REV LETT, V66, P1123, DOI 10.1103/PhysRevLett.66.1123 VINCENT TL, 1991, DYNAM CONTROL, V1, P35, DOI 10.1007/BF02169423 DITTO WL, 1990, PHYS REV LETT, V65, P3211, DOI 10.1103/PhysRevLett.65.3211 EHRHARD P, 1990, J FLUID MECH, V217, P487, DOI 10.1017/S0022112090000817 OTT E, 1990, PHYS REV LETT, V64, P1196, DOI 10.1103/PhysRevLett.64.1196 CORLESS MJ, 1981, IEEE T AUTOMAT CONTR, V26, P1139, DOI 10.1109/TAC.1981.1102785 KNOBLOCH E, 1981, PHYS LETT A, V82, P439, DOI 10.1016/0375-9601(81)90274-7 BRINDLEY J, 1980, PHYS LETT A, V77, P441, DOI 10.1016/0375-9601(80)90534-4 GIBBON JD, 1980, PHYS LETT A, V77, P295, DOI 10.1016/0375-9601(80)90700-8 PEDLOSKY J, 1980, J ATMOS SCI, V37, P1177, DOI 10.1175/1520-0469(1980)037<1177:CAPBOF>2.0.CO;2 HAKEN H, 1975, PHYS LETT A, VA 53, P77, DOI 10.1016/0375-9601(75)90353-9 HALE JK, 1969, ORDINARY DIFFERENTIA, P31 LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2CHEN, YH CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

n/a

Notes:

ISI Document Delivery No.: PV107Times Cited: 36Cited Reference Count: 26Cited References: WEI SQ, 1994, PHYS REV B, V50, P2221, DOI 10.1103/PhysRevB.50.2221 PAVONE P, 1993, PHYS REV B, V48, P3156, DOI 10.1103/PhysRevB.48.3156 WEI SQ, 1992, PHYS REV LETT, V69, P2799, DOI 10.1103/PhysRevLett.69.2799 XU CH, 1991, PHYS REV B, V43, P5024, DOI 10.1103/PhysRevB.43.5024 FLESZAR A, 1990, PHYS REV LETT, V64, P2961, DOI 10.1103/PhysRevLett.64.2961 BUDA F, 1990, PHYS REV B, V41, P1680, DOI 10.1103/PhysRevB.41.1680 BIERNACKI S, 1989, PHYS REV LETT, V63, P290, DOI 10.1103/PhysRevLett.63.290 KAGAYA HM, 1988, SOLID STATE COMMUN, V65, P1445, DOI 10.1016/0038-1098(88)90111-1 BARONI S, 1987, PHYS REV LETT, V58, P1861, DOI 10.1103/PhysRevLett.58.1861 DESAI PD, 1986, J PHYS CHEM REF DATA, V15, P967 BOYER LL, 1979, PHYS REV LETT, V42, P584, DOI 10.1103/PhysRevLett.42.584 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 CHANDRASEKHAR M, 1978, PHYS REV B, V17, P1623, DOI 10.1103/PhysRevB.17.1623 SOMA T, 1978, PHYS STATUS SOLIDI B, V87, P345, DOI 10.1002/pssb.2220870140 LYON KG, 1977, J APPL PHYS, V48, P865, DOI 10.1063/1.323747 ASHCROFT NW, 1976, SOLID STATE PHYS, P492 WEINSTEIN BA, 1975, PHYS REV B, V12, P1172, DOI 10.1103/PhysRevB.12.1172 HULTGREN R, 1973, SELECTED VALUES THER NILSSON G, 1972, PHYS REV B, V6, P3777, DOI 10.1103/PhysRevB.6.3777 SLATER JC, 1972, J CHEM PHYS, V57, P2389, DOI 10.1063/1.1678599 YATES B, 1972, THERMAL EXPANSION, P84 IBACH H, 1969, PHYS STATUS SOLIDI, V31, P625, DOI 10.1002/pssb.19690310224 DOLLING G, 1963, INELASTIC SCATTERING, V2, P37 LEIBFRIED G, 1961, SOLID STATE PHYS, V12, P275 FLUBACHER P, 1959, PHILOS MAG, V4, P273, DOI 10.1080/14786435908233340 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340WEI, SQ LI, CL CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The solid-solution phase of hydrogen in hexagonal close-packed yttrium (a-YH(x)) is studied using the pseudopotential method within the local-density-functional approximation with a plane-wave basis. The binding energies associated with different interstitial sites are evaluated for several ordered structures: YH0.5, YH0.25, and YH0.167. It is found that the occupation of the tetrahedral site is always energetically favorable. The hydrogen potential-energy curves around the tetrahedral sites along the c axis and along the path connecting the adjacent octahedral sites are also calculated for YH0.25. In particular, the local vibrational mode along the c axis is estimated to be 100 meV, in excellent agreement with that measured in neutron-scattering experiments. Finally, the intriguing pairing phenomenon is investigated by calculating the total energy for various pairing configurations. The possibility of pairing between nearest-neighbor tetrahedral sites is excluded due to the high energy. It is found that the pairing of hydrogen across a metal atom is indeed energetically favorable compared with other kinds of pairs considered and also with isolated tetrahedral hydrogen atoms. The connection with the electronic structure of the system is also examined.

Notes:

ISI Document Delivery No.: NN993Times Cited: 10Cited Reference Count: 47Cited References: MIN BJ, 1992, PHYS REV B, V45, P12806, DOI 10.1103/PhysRevB.45.12806 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 BLASCHKO O, 1991, J LESS-COMMON MET, V172, P174 LIU F, 1990, PHYS REV LETT, V65, P1169, DOI 10.1103/PhysRevLett.65.1169 KOUDOU C, 1990, PHYS REV LETT, V64, P1474, DOI 10.1103/PhysRevLett.64.1474 MIN BJ, 1989, PHYS REV B, V40, P7532, DOI 10.1103/PhysRevB.40.7532 BLASCHKO O, 1989, PHYS REV B, V40, P5344, DOI 10.1103/PhysRevB.40.5344 BLASCHKO O, 1989, PHYS REV B, V39, P5605, DOI 10.1103/PhysRevB.39.5605 LICHTY L, 1989, PHYS REV B, V39, P2021 LIU F, 1989, PHYS REV LETT, V63, P1369 MINOT C, 1989, Z PHYS CHEM, V549, P163 ANDERSON IS, 1988, PHYS REV B, V37, P4358, DOI 10.1103/PhysRevB.37.4358 DAOU JN, 1988, ANN CHIM-SCI MAT, V13, P567 MCKERGOW MW, 1987, J PHYS C SOLID STATE, V20, P1909, DOI 10.1088/0022-3719/20/13/009 VAJDA P, 1987, J PHYS F MET PHYS, V17, P1029, DOI 10.1088/0305-4608/17/5/005 BONNET JE, 1987, J LESS-COMMON MET, V129, P287, DOI 10.1016/0022-5088(87)90063-4 LICHTY L, 1987, J LESS-COMMON MET, V129, P31, DOI 10.1016/0022-5088(87)90030-0 ANDERSON IS, 1986, PHYS REV LETT, V57, P2822, DOI 10.1103/PhysRevLett.57.2822 VAJDA P, 1986, PHYS REV B, V34, P5154, DOI 10.1103/PhysRevB.34.5154 DAOU JN, 1986, PHYS STATUS SOLIDI A, V95, P543, DOI 10.1002/pssa.2210950223 DAOU JN, 1986, PHILOS MAG A, V53, P611 BLASCHKO O, 1985, PHYS REV LETT, V55, P2876, DOI 10.1103/PhysRevLett.55.2876 BURGER JP, 1985, Z PHYS CHEM NEUE FOL, V143, P111 WEAVER JH, 1985, PHYS REV B, V32, P3562, DOI 10.1103/PhysRevB.32.3562 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 BONNET JE, 1982, J PHYS F MET PHYS, V12, P699, DOI 10.1088/0305-4608/12/4/012 DAOU JN, 1982, J PHYS F MET PHYS, V12, pL13, DOI 10.1088/0305-4608/12/2/002 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 DAOU JN, 1981, J PHYS C SOLID STATE, V14, P129, DOI 10.1088/0022-3719/14/2/010 DAOU JN, 1981, SOLID STATE COMMUN, V38, P135, DOI 10.1016/0038-1098(81)90805-X DAOU JN, 1981, J PHYS C SOLID STATE, V14, P3155, DOI 10.1088/0022-3719/14/22/010 KHATAMIAN D, 1981, PHYS REV B, V23, P624, DOI 10.1103/PhysRevB.23.624 JENSEN CL, 1980, J LESS-COMMON MET, V75, P175 BONNET JE, 1979, J PHYS CHEM SOLIDS, V40, P421, DOI 10.1016/0022-3697(79)90056-8 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 SWITENDICK AC, 1979, Z PHYS CHEM NEUE FOL, V117, P89 BEAUDRY BJ, 1978, HDB PHYSICS CHEM RAR DAOU JN, 1976, SOLID STATE COMMUN, V19, P895, DOI 10.1016/0038-1098(76)90680-3 BEAUDRY BJ, 1975, METALL T B, V6, P419, DOI 10.1007/BF02913827 DAOU JN, 1974, J PHYS CHEM SOLIDS, V35, P59, DOI 10.1016/0022-3697(74)90011-0 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 FAIRCLOUGH JPA, UNPUBWANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The phase stability is studied for the beta-phase YH2+x system based on first-principles total energy calculations. Our study predicts that the D0(22), ''40'', and D1a structures are stable near x = 0. 25, 0.5, and 0.8, respectively. Using the effective cluster interactions obtained from the first-principles total-energy data, the phase diagram for the D0(22) and ''40'' ordered phases is calculated by the cluster variational method. The calculated order-disorder transition temperature at x = 0.1 for the D0(22) structure is around 280 K, which is consistent with the recent observation of the metal-semiconductor transition near 230-280 K and resistivity anomalies near 200-250 K for the system with x near 0.1 [Daou and Vajda, Phys. Rev. B 45, 10 907 (1992)].

Notes:

ISI Document Delivery No.: NB507Times Cited: 24Cited Reference Count: 43Cited References: SUN SN, 1993, SURF SCI, V280, P415, DOI 10.1016/0039-6028(93)90694-F ANDRE G, 1992, PHYS REV B, V46, P8644, DOI 10.1103/PhysRevB.46.8644 ASTA M, 1992, PHYS REV B, V46, P5055, DOI 10.1103/PhysRevB.46.5055 DAOU JN, 1992, PHYS REV B, V45, P10907, DOI 10.1103/PhysRevB.45.10907 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 SANCHEZ JM, 1991, PHYS REV B, V44, P5411, DOI 10.1103/PhysRevB.44.5411 LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512 VAJDA P, 1991, PHYS REV LETT, V66, P3176, DOI 10.1103/PhysRevLett.66.3176 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 BECKER JD, 1991, MATER RES SOC S P, V213, P133 BURGER JP, 1991, J PHYS CHEM SOLIDS, V52, P779, DOI 10.1016/0022-3697(91)90076-C WEI SH, 1990, PHYS REV B, V41, P8240, DOI 10.1103/PhysRevB.41.8240 VAJDA P, 1990, EUROPHYS LETT, V11, P567, DOI 10.1209/0295-5075/11/6/014 SHINAR J, 1990, PHYS REV LETT, V64, P563, DOI 10.1103/PhysRevLett.64.563 SLUITER M, 1989, PHYS REV B, V40, P11215, DOI 10.1103/PhysRevB.40.11215 WILLE LT, 1989, PHYS REV B, V40, P6931, DOI 10.1103/PhysRevB.40.6931 FERREIRA LG, 1989, PHYS REV B, V40, P3197, DOI 10.1103/PhysRevB.40.3197 BERERA A, 1989, PHYS REV B, V39, P6727, DOI 10.1103/PhysRevB.39.6727 SHINAR J, 1988, PHYS REV B, V37, P2066, DOI 10.1103/PhysRevB.37.2066 WEI SH, 1987, PHYS REV B, V36, P4163, DOI 10.1103/PhysRevB.36.4163 CARLSSON AE, 1987, PHYS REV B, V35, P4858, DOI 10.1103/PhysRevB.35.4858 WOOD DM, 1985, J PHYS A-MATH GEN, V18, P1343, DOI 10.1088/0305-4470/18/9/018 BLASCHKO O, 1984, J LESS-COMMON MET, V100, P307, DOI 10.1016/0022-5088(84)90071-7 BLASCHKO O, 1984, PHYS REV B, V29, P5187, DOI 10.1103/PhysRevB.29.5187 KLAVINS P, 1984, PHYS REV B, V29, P5349, DOI 10.1103/PhysRevB.29.5349 SANCHEZ JM, 1984, PHYSICA A, V128, P334, DOI 10.1016/0378-4371(84)90096-7 CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 SANCHEZ JM, 1980, PHYS REV B, V21, P216, DOI 10.1103/PhysRevB.21.216 ELLIS TE, 1979, PHYS REV LETT, V42, P456, DOI 10.1103/PhysRevLett.42.456 SANCHEZ JM, 1978, PHYS REV B, V17, P2926, DOI 10.1103/PhysRevB.17.2926 KIKUCHI R, 1977, J PHYSIQUE, V38, P307, DOI 10.1051/jphyscol:1977761 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 PEBLER A, 1962, J PHYS CHEM-US, V66, P148, DOI 10.1021/j100807a033 HIJMANS J, 1955, PHYSICA, V21, P485 HIJMANS J, 1955, PHYSICA, V21, P471 BARKER JA, 1953, PROC R SOC LON SER-A, V216, P45, DOI 10.1098/rspa.1953.0005 KIKUCHI R, 1951, PHYS REV, V81, P988, DOI 10.1103/PhysRev.81.988 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 WANG YK, UNPUBSUN, SN WANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We present a tight-binding model for silicon which incorporates two-center intra-atomic parameters. The model is fitted to density-functional theory band structures for silicon in the diamond structure over a number of volumes. It is shown that with only a two-center, orthogonal basis, reasonable total energies can be obtained for many different structures. Thus it eliminates the need to use structure-dependent terms in the total-energy model.

Notes:

ISI Document Delivery No.: NG116Times Cited: 49Cited Reference Count: 31Cited References: MERCER JL, 1993, PHYS REV B, V47, P9366, DOI 10.1103/PhysRevB.47.9366 SIGQALAS M, 1993, MATERIALS THEORY MOD, V291, P27 BOYER LL, 1991, PHYS REV LETT, V67, P715, DOI 10.1103/PhysRevLett.67.715 SAWADA S, 1990, VACUUM, V41, P612, DOI 10.1016/0042-207X(90)90432-X SANKEY OF, 1989, PHYS REV B, V40, P3979, DOI 10.1103/PhysRevB.40.3979 WANG CZ, 1989, PHYS REV B, V40, P3390, DOI 10.1103/PhysRevB.40.3390 GOODWIN L, 1989, EUROPHYS LETT, V9, P701, DOI 10.1209/0295-5075/9/7/015 WANG CZ, 1989, PHYS REV B, V39, P8586, DOI 10.1103/PhysRevB.39.8586 TOMANEK D, 1989, PHYS REV B, V39, P5361, DOI 10.1103/PhysRevB.39.5361 KHAN FS, 1989, PHYS REV B, V39, P3688, DOI 10.1103/PhysRevB.39.3688 CHADI DJ, 1989, ATOMISTIC SIMULATION FOULKES WMC, 1989, PHYS REV B, V39, P12520, DOI 10.1103/PhysRevB.39.12520 SUTTON AP, 1988, J PHYS C SOLID STATE, V21, P35, DOI 10.1088/0022-3719/21/1/007 ALLEN PB, 1987, J PHYS CHEM-US, V91, P4964, DOI 10.1021/j100303a015 ALERHAND OL, 1987, PHYS REV LETT, V59, P657, DOI 10.1103/PhysRevLett.59.657 TOMANEK D, 1987, PHYS REV B, V36, P1208, DOI 10.1103/PhysRevB.36.1208 ALERHAND OL, 1987, PHYS REV B, V35, P5533, DOI 10.1103/PhysRevB.35.5533 QIAN GX, 1987, PHYS REV B, V35, P1288, DOI 10.1103/PhysRevB.35.1288 VANSCHILFGAARDE M, 1986, PHYS REV B, V33, P2653, DOI 10.1103/PhysRevB.33.2653 NEILSEN OH, 1985, PHYS REV B, V32, P3792 CHADI DJ, 1984, PHYS REV B, V29, P785, DOI 10.1103/PhysRevB.29.785 YIN MT, 1984, PHYS REV B, V30, P1773, DOI 10.1103/PhysRevB.30.1773 YIN MT, 1982, PHYS REV B, V26, P3259, DOI 10.1103/PhysRevB.26.3259 BULLETT DW, 1980, SOLID STATE PHYSICS, V35 KELLY MJ, 1980, SOLID STATE PHYSICS, V35 CHADI DJ, 1979, J VAC SCI TECHNOL, V16, P1290, DOI 10.1116/1.570143 CHADI DJ, 1979, PHYS REV B, V19, P2074, DOI 10.1103/PhysRevB.19.2074 CHADI DJ, 1977, PHYS REV B, V16, P790, DOI 10.1103/PhysRevB.16.790 SLATER JC, 1954, PHYS REV, V94, P1498, DOI 10.1103/PhysRev.94.1498 BISWAS R, COMMUNICATION CHADI DJ, COMMUNICATIONMERCER, JL CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We present the calculation of the full phonon spectrum for silicon and germanium with the pseudopotential method and the local-density approximation without using linear-response theory. The interplanar-force constants for three high-symmetry orientations [(100), (110), and (111)] are evaluated by supercell calculations using the Hellmann-Feynman theorem. By considering the symmetry of the crystal, three-dimensional interatomic-force-constant matrices are determined by a least-squares fit. Interactions up to the eighth nearest neighbors are included. The dynamical matrix, which is the Fourier transform of the force constant matrix, is hence constructed and diagonalized for any arbitrary wave vector in the Brillouin zone, yielding the phonon dispersion. In this paper we will present the calculation details and discuss various aspects of convergence. Phonon dispersions of Si and Ge calculated are in excellent agreement with experiments.

Notes:

ISI Document Delivery No.: PA187Times Cited: 28Cited Reference Count: 27Cited References: WEI SQ, 1992, PHYS REV B, V46, P12411, DOI 10.1103/PhysRevB.46.12411 WEI SQ, 1992, PHYS REV LETT, V69, P2799, DOI 10.1103/PhysRevLett.69.2799 QUONG AA, 1992, PHYS REV B, V46, P10734, DOI 10.1103/PhysRevB.46.10734 GIANNOZZI P, 1991, PHYS REV B, V43, P7231, DOI 10.1103/PhysRevB.43.7231 BARONI S, 1990, PHYS REV LETT, V65, P84, DOI 10.1103/PhysRevLett.65.84 FASCOLINO A, 1990, PHYS REV B, V41, P8302 TROULLIER N, 1990, PHYS REV B, V43, P1993 MAZUR A, 1989, PHYS REV B, V39, P5261, DOI 10.1103/PhysRevB.39.5261 SRIVASTAVA GP, 1988, J PHYS C SOLID STATE, V21, P5087, DOI 10.1088/0022-3719/21/29/007 BARONI S, 1987, PHYS REV LETT, V58, P1861, DOI 10.1103/PhysRevLett.58.1861 DEVREESE JT, 1985, ELECTRONIC STRUCTURE KUNC K, 1985, PHYS REV B, V32, P2010, DOI 10.1103/PhysRevB.32.2010 BRUESCH P, 1982, PHONON THEORY EXPT KUNC K, 1982, PHYS REV LETT, V48, P406, DOI 10.1103/PhysRevLett.48.406 YIN MT, 1982, PHYS REV B, V25, P4317, DOI 10.1103/PhysRevB.25.4317 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 YIN MT, 1980, PHYS REV LETT, V45, P1004, DOI 10.1103/PhysRevLett.45.1004 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 ASHCROFT NW, 1976, SOLID STATE PHYS, P421 SHAM LJ, 1974, DYNAMICAL PROPERTIES, P301 SINHA SK, 1973, CRC CRIT R SOLID ST, V3, P273 NILSSON G, 1972, PHYS REV B, V6, P3777, DOI 10.1103/PhysRevB.6.3777 SLATER JC, 1972, J CHEM PHYS, V57, P2389, DOI 10.1063/1.1678599 DOLLING G, 1963, INELASTIC SCATTERING, V2, P37 HERMAN F, 1959, J PHYS CHEM SOLIDS, V8, P405, DOI 10.1016/0022-3697(59)90376-2 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340WEI, SQ CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

We propose a simple method to evaluate the energies of ideal metal surfaces as a function of orientation based on cluster energy expansion. By symmetry only clusters with even-number corners will be present. It is found that the energy expansion converges rapidly and in most cases can be truncated at the pair interaction level. The parameters can be determined from a limited number of low-index surface energies obtained from first-principles calculations. The equilibrium crystal shape at T = O is then predicted and the step energy on major facets is derived for some fee metals.

Notes:

ISI Document Delivery No.: PD753Times Cited: 24Cited Reference Count: 28Cited References: RODACH T, 1993, SURF SCI, V286, P66, DOI 10.1016/0039-6028(93)90556-Y EAGLESHAM DJ, 1993, PHYS REV LETT, V70, P1643, DOI 10.1103/PhysRevLett.70.1643 ASTA M, 1992, PHYS REV B, V46, P5055, DOI 10.1103/PhysRevB.46.5055 METHFESSEL M, 1992, PHYS REV B, V46, P4816, DOI 10.1103/PhysRevB.46.4816 BONZEL HP, 1991, SURF SCI, V259, P314, DOI 10.1016/0039-6028(91)90561-6 SINNOTT SB, 1991, PHYS REV B, V44, P8927, DOI 10.1103/PhysRevB.44.8927 LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512 TAKEUCHI N, 1991, PHYS REV B, V43, P13899, DOI 10.1103/PhysRevB.43.13899 TAKEUCHI N, 1991, PHYS REV B, V43, P14363, DOI 10.1103/PhysRevB.43.14363 MANSFIELD M, 1991, PHYS REV B, V43, P8829, DOI 10.1103/PhysRevB.43.8829 WOLF D, 1990, SURF SCI, V226, P389, DOI 10.1016/0039-6028(90)90502-Y METOIS JJ, 1989, J MICROSC SPECT ELEC, V14, P343 METOIS JJ, 1989, ULTRAMICROSCOPY, V31, P73, DOI 10.1016/0304-3991(89)90036-3 WORTIS M, 1988, CHEM PHYSICS SOLID S, V7, P367 HO KM, 1987, PHYS REV LETT, V59, P1833, DOI 10.1103/PhysRevLett.59.1833 HEYRAUD JC, 1987, J CRYST GROWTH, V82, P269, DOI 10.1016/0022-0248(87)90313-7 METOIS JJ, 1987, SURF SCI, V180, P647, DOI 10.1016/0039-6028(87)90231-7 KERN R, 1987, MORPHOLOGY CRYSTALS, P77 HEYRAUD JC, 1986, SURF SCI, V177, P213, DOI 10.1016/0039-6028(86)90268-2 SANCHEZ JM, 1984, PHYSICA A, V128, P334, DOI 10.1016/0378-4371(84)90096-7 HEYRAUD JC, 1983, SURF SCI, V128, P334, DOI 10.1016/S0039-6028(83)80036-3 HEYRAUD JC, 1980, ACTA METALL MATER, V28, P1789, DOI 10.1016/0001-6160(80)90032-2 MACKENZIE JK, 1962, J PHYS CHEM SOLIDS, V23, P185, DOI 10.1016/0022-3697(62)90001-X GOMER R, 1953, STRUCTURE PROPERTIES HERRING C, 1951, PHYS REV, V82, P87, DOI 10.1103/PhysRev.82.87 Wulff G, 1901, Z KRYSTALLOGR MINERA, V34, P449 HO KM, COMMUNICATION NEEDS RJ, UNPUBWEI, SQ CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The cubic YH2+x system with an extended hydrogen composition is studied using the pseudopotential method and the local-density-functional approximation with a plane-wave basis. The study focuses on the beta phase with the metal atoms forming a face-centered-cubic lattice and the octahedral sites partially occupied by hydrogen for 0 < x < 1. The self-consistent total-energy calculation is performed by employing the supercell modeling method. The structural property, in particular, the volume contraction with increasing x, is investigated by analyzing the energy changes for different site occupation. It is found that the lattice contracts mainly to increase the interaction of the additional electron and the metal d potential. In addition, the (420)-plane ordering of the x-excess hydrogen is examined for YH2.25 and is confirmed by energetics studies.

Notes:

ISI Document Delivery No.: NJ756Times Cited: 15Cited Reference Count: 37Cited References: WANG Y, 1993, PHYS REV LETT, V71, P1226, DOI 10.1103/PhysRevLett.71.1226 FUKAI Y, 1993, METAL HYDROGEN SYSTE ANDRE G, 1992, PHYS REV B, V46, P8644, DOI 10.1103/PhysRevB.46.8644 DAOU JN, 1992, PHYS REV B, V45, P10907, DOI 10.1103/PhysRevB.45.10907 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512 VAJDA P, 1991, PHYS REV LETT, V66, P3176, DOI 10.1103/PhysRevLett.66.3176 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 SHINAR J, 1990, PHYS REV LETT, V64, P563, DOI 10.1103/PhysRevLett.64.563 MANCHESTER FD, 1990, METAL HYDROGEN SYSTE MIN BJ, 1989, PHYS REV B, V40, P7532, DOI 10.1103/PhysRevB.40.7532 SHINAR J, 1988, PHYS REV B, V37, P2066, DOI 10.1103/PhysRevB.37.2066 VAJDA P, 1987, PHYS REV B, V36, P8669, DOI 10.1103/PhysRevB.36.8669 WEI SH, 1987, PHYS REV B, V36, P4163, DOI 10.1103/PhysRevB.36.4163 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 KULIKOV NI, 1982, J LESS-COMMON MET, V88, P307, DOI 10.1016/0022-5088(82)90238-7 MISEMER DK, 1982, PHYS REV B, V26, P5634, DOI 10.1103/PhysRevB.26.5634 FUJIMORI A, 1981, J PHYS C SOLID STATE, V14, P1427 FUJIMORI A, 1980, PHYS REV B, V22, P3573, DOI 10.1103/PhysRevB.22.3573 GUPTA M, 1980, PHYS REV B, V22, P6074, DOI 10.1103/PhysRevB.22.6074 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 KULIKOV I, 1979, Z PHYS CHEM, V117, P113 PETERMAN DJ, 1979, PHYS REV B, V19, P4867, DOI 10.1103/PhysRevB.19.4867 PETERMAN DJ, 1979, PHYS REV B, V20, P5313, DOI 10.1103/PhysRevB.20.5313 BEAUDRY BJ, 1978, HDB PHYSICS CHEM RAR GUPTA M, 1978, SOLID STATE COMMUN, V27, P1355, DOI 10.1016/0038-1098(78)91571-5 LIBOWITZ GG, 1972, PHYS REV B, V6, P4540, DOI 10.1103/PhysRevB.6.4540 SWITENDICK AC, 1971, INT J QUANTUM CHEM, V5, P459 SWITENDI.AC, 1970, SOLID STATE COMMUN, V8, P1463, DOI 10.1016/0038-1098(70)90720-9 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 MANSMANN M, 1964, J PHYS-PARIS, V25, P454, DOI 10.1051/jphys:01964002505045400 PEBLER A, 1962, J PHYS CHEM-US, V66, P148, DOI 10.1021/j100807a033 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 SUN SJ, IN PRESS PHYS REV BWANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1993

Abstract:

n/a

Notes:

ISI Document Delivery No.: LN185Times Cited: 9Cited Reference Count: 7Cited References: WOLF D, 1993, PHYS REV LETT, V70, P627, DOI 10.1103/PhysRevLett.70.627 CAMMARATA RC, 1992, SURF SCI, V279, P341, DOI 10.1016/0039-6028(92)90560-S NEEDS RJ, 1991, SURF SCI, V242, P215, DOI 10.1016/0039-6028(91)90269-X MANSFIELD M, 1990, J PHYS-CONDENS MAT, V2, P2361, DOI 10.1088/0953-8984/2/10/004 ZANGWILL A, 1988, PHYSICS SURFACES MULLINS WW, 1963, METAL SURFACES STRUC, P17 SHUTTLEWORTH R, 1950, P PHYS SOC LOND A, V63, P444, DOI 10.1088/0370-1298/63/5/302CHOU, MY WEI, SQ VANDERBILT, DAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The asymmetry in the phase diagram of the H/Ru(001) system is studied by assuming a lattice gas model for the chemisorbed hydrogen and using the cluster variation method. Ground state analysis of the ordered structures shows that the effective pair interaction for the next-nearest neighbors has to be repulsive. We also found that the order-disorder transition temperatures and hence the phase diagram are very sensitive to upsilon3, the ratio of the effective next-nearest to nearest neighbor interactions of H adatoms. The asymmetry in the phase diagram, which cannot be accounted for by the adsorbate relaxation model by Persson [Surf. Sci. 258 (1991) 451], is attributed to the coverage dependence of the effective pair interactions. By assuming a simple piecewise linear dependence of upsilon3 on the chemical potential, we constructed an asymmetric phase diagram which is in excellent agreement with the experimental data. The model studied can be applied to the H/Pd(111) system directly and can be easily generalized for other close-packed metal surfaces.

Notes:

ISI Document Delivery No.: KG609Times Cited: 3Cited Reference Count: 51Cited References: PERSSON BNJ, 1991, SURF SCI, V258, P451, DOI 10.1016/0039-6028(91)90937-N DUNWEG B, 1991, J CHEM PHYS, V94, P3958 SOKOLOWSKI M, 1991, SURF SCI, V243, P261, DOI 10.1016/0039-6028(91)90364-X GUNTHER CCA, 1990, PHYS REV B, V42, P10738, DOI 10.1103/PhysRevB.42.10738 AUKRUST T, 1990, PHYS REV B, V41, P8772, DOI 10.1103/PhysRevB.41.8772 EINSTEIN TL, 1990, SURF SCI, V227, P114, DOI 10.1016/0039-6028(90)90398-R BARTELT NC, 1989, PHYS REV B, V40, P10759, DOI 10.1103/PhysRevB.40.10759 WILLE LT, 1989, PHYS REV B, V40, P6931, DOI 10.1103/PhysRevB.40.6931 FELTER TE, 1989, PHYS REV B, V40, P891, DOI 10.1103/PhysRevB.40.891 BERERA A, 1989, PHYS REV B, V39, P6727, DOI 10.1103/PhysRevB.39.6727 CHOU MY, 1989, PHYS REV B, V39, P5623, DOI 10.1103/PhysRevB.39.5623 DEFONTAINE D, 1989, ALLOY PHASE STABILIT, P177 WILLE LT, 1988, PHYS REV B, V37, P2227, DOI 10.1103/PhysRevB.37.2227 CHRISTMANN K, 1988, SURF SCI REP, V9, P1, DOI 10.1016/0167-5729(88)90009-X LINDROOS M, 1987, SURF SCI, V192, P421 DEFONTAINE D, 1987, PHYS REV B, V36, P5709, DOI 10.1103/PhysRevB.36.5709 GONIS A, 1987, PHYS REV B, V36, P4630, DOI 10.1103/PhysRevB.36.4630 MACGILLIVRAY IR, 1987, PHYS REV B, V35, P3545, DOI 10.1103/PhysRevB.35.3545 DAW MS, 1987, PHYS REV B, V35, P2128, DOI 10.1103/PhysRevB.35.2128 LINDROOS M, 1987, SURF SCI, V180, P237, DOI 10.1016/0039-6028(87)90046-X ROELOFS LD, 1986, SURF SCI, V176, P295, DOI 10.1016/0039-6028(86)90177-9 MUSCAT JP, 1986, PHYS REV B, V33, P8136, DOI 10.1103/PhysRevB.33.8136 FELTER TE, 1986, SURF SCI, V171, pL379, DOI 10.1016/0039-6028(86)90548-0 FEULNER P, 1985, SURF SCI, V154, P465, DOI 10.1016/0039-6028(85)90045-7 NAGAI K, 1984, PHYS REV B, V30, P1461, DOI 10.1103/PhysRevB.30.1461 PENKA V, 1984, SURF SCI, V136, P307, DOI 10.1016/0039-6028(84)90614-9 RIKVOLD PA, 1984, PHYS REV B, V29, P6285, DOI 10.1103/PhysRevB.29.6285 SANCHEZ JM, 1984, PHYSICA A, V128, P334, DOI 10.1016/0378-4371(84)90096-7 GLOSLI J, 1983, CAN J PHYS, V61, P1515 RIKVOLD PA, 1983, PHYS REV B, V28, P2686, DOI 10.1103/PhysRevB.28.2686 IMBIHL R, 1982, SURF SCI, V117, P257, DOI 10.1016/0039-6028(82)90506-4 KINZEL W, 1982, SURF SCI, V121, P13, DOI 10.1016/0039-6028(82)90233-3 SANCHEZ JM, 1982, ACTA CRYSTALLOGR A, V38, P214, DOI 10.1107/S0567739482000485 ENGEL T, 1981, SURF SCI, V109, P140, DOI 10.1016/0039-6028(81)90517-3 SCHICK M, 1981, PROG SURF SCI, V11, P245, DOI 10.1016/0079-6816(81)90002-2 SANCHEZ JM, 1980, PHYS REV B, V21, P216, DOI 10.1103/PhysRevB.21.216 CHRISTMANN K, 1979, J CHEM PHYS, V70, P4168, DOI 10.1063/1.438041 DOMANY E, 1978, PHYS REV B, V18, P2209, DOI 10.1103/PhysRevB.18.2209 SANCHEZ JM, 1978, PHYS REV B, V17, P2926, DOI 10.1103/PhysRevB.17.2926 WANG WY, 1978, SURF SCI, V77, P550 DOMANY E, 1977, PHYS REV LETT, V38, P1148, DOI 10.1103/PhysRevLett.38.1148 ALEXANDER S, 1975, PHYS LETT A, V54, P353, DOI 10.1016/0375-9601(75)90766-5 KIKUCHI R, 1974, J CHEM PHYS, V60, P1071, DOI 10.1063/1.1681115 HIJMANS J, 1955, PHYSICA, V21, P485 HIJMANS J, 1955, PHYSICA, V21, P499 HIJMANS J, 1955, PHYSICA, V21, P471 BARKER JA, 1953, PROC R SOC LON SER-A, V216, P45, DOI 10.1098/rspa.1953.0005 HENRY NFM, 1952, INT TABLE CRYSTALLOG, V1 KIKUCHI R, 1951, PHYS REV, V81, P988, DOI 10.1103/PhysRev.81.988 LIFSHITZ EM, 1942, J PHYS MOSCOW, V7, P251 LIFSHITZ EM, 1942, J PHYS MOSCOW, V7, P61SUN, SN CHOU, MYELSEVIER SCIENCE BVAMSTERDAM

Abstract:

Using tight-binding models, the energies of a number of silicon and germanium (111) surfaces are studied. These include reconstructed surfaces with dimers and stacking faults (DS), simple adatom surfaces such as 2x2 and c(2x8), and more complicated cases with dimers, adatoms, and stacking faults (DAS). For reconstructed surfaces containing adatoms, it is found that a simple correction term dependent on the adatom concentration is needed in the present total-energy model to account for the unusual geometry. Similarities between the silicon and germanium reconstructions are seen and compare well with ab initio results. There are also some differences between silicon and germanium, for example, the DS surfaces are lower in energy than the relaxed (1x1) for silicon, but higher for germanium. Si(111) reconstructs into the DAS structure while Ge(111) goes to the simple adatom c(2x8) surface. The c(2x8), 7x7 DAS, (1x1), and 7x7 DS surface reconstructions of Ge(111) were studied with in-plane strain. For these surfaces, a strain of about 2% was sufficient to make the 7x7 DAS/DS surface lower in energy than the c(2x8)/(1x1) surface. An analysis of the energy per atom showed that the dimer-row and associated first-layer atoms played a major part in the differing energy behavior, in agreement with an earlier proposal. An expansive strain was applied to the 2x2, 7x7 DAS, (1x1), and 7x7 DS surface reconstructions of Si(111). With a strain of about 2.5% the adatom surfaces switched relative energies, while the adatom free surfaces required only about 1.5% strain. As for germanium, the dimer-row and associated atoms were of major importance in the differing energy change.

Notes:

ISI Document Delivery No.: LV385Times Cited: 21Cited Reference Count: 42Cited References: MERCER JL, 1993, PHYS REV B, V47, P9366, DOI 10.1103/PhysRevB.47.9366 TAKEUCHI N, 1992, PHYS REV LETT, V69, P648, DOI 10.1103/PhysRevLett.69.648 BALAMANE H, 1992, PHYS REV B, V46, P2250, DOI 10.1103/PhysRevB.46.2250 BROMMER KD, 1992, PHYS REV LETT, V68, P1355, DOI 10.1103/PhysRevLett.68.1355 STICH I, 1992, PHYS REV LETT, V68, P1351, DOI 10.1103/PhysRevLett.68.1351 KLITSNER T, 1991, PHYS REV LETT, V67, P3800, DOI 10.1103/PhysRevLett.67.3800 TAKEUCHI N, 1991, PHYS REV B, V44, P13611, DOI 10.1103/PhysRevB.44.13611 BATRA IP, 1990, PHYS REV B, V41, P5048, DOI 10.1103/PhysRevB.41.5048 PAYNE MC, 1989, J PHYS-CONDENS MAT, V1, pSB63, DOI 10.1088/0953-8984/1/SB/012 MEADE RD, 1989, PHYS REV B, V40, P3905, DOI 10.1103/PhysRevB.40.3905 JONES RO, 1989, REV MOD PHYS, V61, P689, DOI 10.1103/RevModPhys.61.689 WANG CZ, 1989, PHYS REV B, V39, P8586, DOI 10.1103/PhysRevB.39.8586 BECKER RS, 1989, PHYS REV B, V39, P1633, DOI 10.1103/PhysRevB.39.1633 FEIDENHANSL R, 1988, PHYS REV B, V38, P9715, DOI 10.1103/PhysRevB.38.9715 VANDERBILT D, 1988, STRUCTURE SURFACES, V2, P276 VANDERBILT D, 1987, PHYS REV B, V36, P6209, DOI 10.1103/PhysRevB.36.6209 VANDERBILT D, 1987, PHYS REV LETT, V59, P1456, DOI 10.1103/PhysRevLett.59.1456 QIAN GX, 1987, PHYS REV B, V35, P1288, DOI 10.1103/PhysRevB.35.1288 NORTHRUP JE, 1986, PHYS REV LETT, V57, P154, DOI 10.1103/PhysRevLett.57.154 MCRAE EG, 1986, SURF SCI, V165, P191, DOI 10.1016/0039-6028(86)90669-2 TAKAYANAGI K, 1985, SURF SCI, V164, P367, DOI 10.1016/0039-6028(85)90753-8 DICENZO SB, 1985, PHYS REV B, V31, P2330, DOI 10.1103/PhysRevB.31.2330 GOSSMANN HJ, 1985, PHYS REV LETT, V55, P1106, DOI 10.1103/PhysRevLett.55.1106 TAKAYANAGI K, 1985, J VAC SCI TECHNOL A, V3, P1502, DOI 10.1116/1.573160 CHADI DJ, 1984, PHYS REV B, V29, P785, DOI 10.1103/PhysRevB.29.785 GOSSMANN HJ, 1984, SURF SCI, V138, pL175, DOI 10.1016/0167-2584(84)90372-4 NORTHRUP JE, 1983, PHYS REV B, V27, P6553, DOI 10.1103/PhysRevB.27.6553 SHOJI K, 1983, JPN J APPL PHYS 2, V22, pL200, DOI 10.1143/JJAP.22.L200 NORTHRUP JE, 1982, PHYS REV LETT, V49, P1349, DOI 10.1103/PhysRevLett.49.1349 NORTHRUP JE, 1982, J VAC SCI TECHNOL, V21, P333, DOI 10.1116/1.571774 PANDEY KC, 1982, PHYS REV LETT, V49, P223, DOI 10.1103/PhysRevLett.49.223 YIN MT, 1982, PHYS REV B, V26, P5668, DOI 10.1103/PhysRevB.26.5668 CHADI DJ, 1981, PHYS REV B, V23, P1843, DOI 10.1103/PhysRevB.23.1843 ICHIKAWA T, 1981, SURF SCI, V105, P395, DOI 10.1016/0039-6028(81)90008-X NORTHRUP JE, 1981, PHYS REV LETT, V47, P1910, DOI 10.1103/PhysRevLett.47.1910 PANDEY KC, 1981, PHYS REV LETT, V47, P1913, DOI 10.1103/PhysRevLett.47.1913 YIN MT, 1981, PHYS REV B, V24, P2303, DOI 10.1103/PhysRevB.24.2303 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 CHADI DJ, 1978, PHYS REV LETT, V41, P1062, DOI 10.1103/PhysRevLett.41.1062 DONOHUE J, 1974, STRUCTURES ELEMENTS LANDER JJ, 1963, J APPL PHYS, V34, P2298, DOI 10.1063/1.1702734 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340MERCER, JL CHOU, MYAMER PHYSICAL SOCCOLLEGE PK

Abstract:

A pseudopotential local-density calculation is performed for YH3 to study the unusual hydrogen displacements previously found in neutron diffraction. These displacements are identified as Peierls distortions associated with (hydrogen) lattice instability in this 3D system. The wave vector of these displacements is close to the vector connecting the electron and hole pockets in the undistorted system. With other electron and hole pockets at GAMMA that still overlap after distortion, the possibility of the existence of an excitonic insulator phase will be discussed.

Notes:

ISI Document Delivery No.: LU280Times Cited: 49Cited Reference Count: 27Cited References: DAOU JN, 1992, PHYS REV B, V45, P10907, DOI 10.1103/PhysRevB.45.10907 BUCHER B, 1991, PHYS REV LETT, V67, P2717, DOI 10.1103/PhysRevLett.67.2717 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 VAJDA P, 1991, PHYS REV LETT, V66, P3176, DOI 10.1103/PhysRevLett.66.3176 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 ANDERSON IS, 1990, PHYS REV LETT, V65, P1439, DOI 10.1103/PhysRevLett.65.1439 INUI T, 1990, GROUP THEORY ITS APP, P371 MANCHESTER FD, 1990, METAL HYDROGEN SYSTE LIU F, 1989, PHYS REV LETT, V63, P1396, DOI 10.1103/PhysRevLett.63.1396 PICKETT WE, 1989, COMPUT PHYS REP, V9, P115, DOI 10.1016/0167-7977(89)90002-6 ANDERSON IS, 1986, PHYS REV LETT, V57, P2822, DOI 10.1103/PhysRevLett.57.2822 BLASCHKO O, 1985, PHYS REV LETT, V55, P2876, DOI 10.1103/PhysRevLett.55.2876 KULIKOV NI, 1985, J LESS-COMMON MET, V107, P111, DOI 10.1016/0022-5088(85)90247-4 FUJIMORI A, 1984, J PHYS C SOLID STATE, V17, P2869, DOI 10.1088/0022-3719/17/16/006 FUJIMORI A, 1984, J PHYS C SOLID STATE, V17, P341, DOI 10.1088/0022-3719/17/2/021 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 BRUCE AD, 1981, STRUCTURAL PHASE TRA SWITENDICK AC, 1978, ADV CHEM SER, V167, P264 KOPAEV YV, 1975, T FIAN SSSR, V86, P3 CHAN SK, 1973, J PHYS F MET PHYS, V3, P795, DOI 10.1088/0305-4608/3/4/022 MIRON NF, 1972, SOV PHYS-CRYSTALLOGR, V17, P342 HALPERIN BI, 1968, SOLID STATE PHYS, V21, P116 KELDYSH LV, 1965, FIZ TVERD TELA+, V6, P2219 MANSMANN M, 1964, J PHYS-PARIS, V25, P454, DOI 10.1051/jphys:01964002505045400 PEBLER A, 1962, J PHYS CHEM-US, V66, P148, DOI 10.1021/j100807a033 PEIERLS RE, 1955, QUANTUM THEORY SOLID, P108 SWITENDICK AC, UNPUBWANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

By accurately fitting tight-binding parameters to ab initio band structures from 14 different tetrahedral volumes, tight-binding parametric formulas have been developed for silicon and germanium. The distance dependences for these orthogonal, nearest-neighbor parameters range from r-2.5 to r-3.3. Repulsive potentials are added in order to reproduce the total energies for a number of bulk structures. It is found that the repulsive potential needed has the simple form of a pairwise interaction multiplied by a structure-dependent constant. Transferability is shown with good bulk and cluster results.

Notes:

ISI Document Delivery No.: KZ508Times Cited: 47Cited Reference Count: 70Cited References: BALAMANE H, 1992, PHYS REV B, V46, P2250, DOI 10.1103/PhysRevB.46.2250 BROMMER KD, 1992, PHYS REV LETT, V68, P1355, DOI 10.1103/PhysRevLett.68.1355 DIXON DA, 1992, CHEM PHYS LETT, V188, P560, DOI 10.1016/0009-2614(92)80866-A BOYER LL, 1991, PHYS REV LETT, V67, P715, DOI 10.1103/PhysRevLett.67.715 KOHYAMA M, 1991, J PHYS-CONDENS MAT, V3, P2193, DOI 10.1088/0953-8984/3/13/022 WANG CZ, 1991, PHYS REV LETT, V66, P189, DOI 10.1103/PhysRevLett.66.189 BOLDING BC, 1990, PHYS REV B, V41, P10568, DOI 10.1103/PhysRevB.41.10568 CHELIKOWSKY JR, 1990, PHYS REV B, V41, P5735, DOI 10.1103/PhysRevB.41.5735 SAWADA S, 1990, VACUUM, V41, P612, DOI 10.1016/0042-207X(90)90432-X ANTONELLI A, 1989, PHYS REV B, V40, P10643, DOI 10.1103/PhysRevB.40.10643 CHELIKOWSKY JR, 1989, PHYS REV LETT, V63, P1653, DOI 10.1103/PhysRevLett.63.1653 WANG CZ, 1989, PHYS REV B, V40, P3390, DOI 10.1103/PhysRevB.40.3390 GOODWIN L, 1989, EUROPHYS LETT, V9, P701, DOI 10.1209/0295-5075/9/7/015 LUEDTKE WD, 1989, PHYS REV B, V40, P1164, DOI 10.1103/PhysRevB.40.1164 WANG CZ, 1989, PHYS REV B, V39, P8586, DOI 10.1103/PhysRevB.39.8586 TERSOFF J, 1989, PHYS REV B, V39, P5566, DOI 10.1103/PhysRevB.39.5566 TOMANEK D, 1989, PHYS REV B, V39, P5361, DOI 10.1103/PhysRevB.39.5361 KHAN FS, 1989, PHYS REV B, V39, P3688, DOI 10.1103/PhysRevB.39.3688 CHELIKOWSKY JR, 1989, PHYS REV LETT, V62, P292, DOI 10.1103/PhysRevLett.62.292 MISTRIOTIS AD, 1989, PHYS REV B, V39, P1212, DOI 10.1103/PhysRevB.39.1212 HARRISON WA, 1989, ELECTRONIC STRUCTURE ISLAM MS, 1988, CHEM PHYS LETT, V153, P496, DOI 10.1016/0009-2614(88)85249-7 TERSOFF J, 1988, PHYS REV B, V38, P9902, DOI 10.1103/PhysRevB.38.9902 TERSOFF J, 1988, PHYS REV B, V37, P6991, DOI 10.1103/PhysRevB.37.6991 BISWAS R, 1987, PHYS REV B, V36, P6434, DOI 10.1103/PhysRevB.36.6434 ALERHAND OL, 1987, PHYS REV LETT, V59, P657, DOI 10.1103/PhysRevLett.59.657 TOMANEK D, 1987, PHYS REV B, V36, P1208, DOI 10.1103/PhysRevB.36.1208 ALERHAND OL, 1987, PHYS REV B, V35, P5533, DOI 10.1103/PhysRevB.35.5533 QIAN GX, 1987, PHYS REV B, V35, P1288, DOI 10.1103/PhysRevB.35.1288 ALLEN PB, 1986, PHYS REV B, V34, P859, DOI 10.1103/PhysRevB.34.859 TERSOFF J, 1986, PHYS REV LETT, V56, P632, DOI 10.1103/PhysRevLett.56.632 PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E BISWAS R, 1985, PHYS REV LETT, V55, P2001, DOI 10.1103/PhysRevLett.55.2001 CAR R, 1985, PHYS REV LETT, V54, P360, DOI 10.1103/PhysRevLett.54.360 JONES RO, 1985, PHYS REV A, V32, P2589, DOI 10.1103/PhysRevA.32.2589 NEILSEN OH, 1985, PHYS REV B, V32, P3792 RAGHAVACHARI K, 1985, PHYS REV LETT, V55, P2853, DOI 10.1103/PhysRevLett.55.2853 RAGHAVACHARI K, 1985, J CHEM PHYS, V83, P3520, DOI 10.1063/1.449157 STILLINGER FH, 1985, PHYS REV B, V31, P5262, DOI 10.1103/PhysRevB.31.5262 CHADI DJ, 1984, PHYS REV B, V29, P785, DOI 10.1103/PhysRevB.29.785 PACCHIONI G, 1984, CHEM PHYS LETT, V107, P70, DOI 10.1016/0009-2614(84)85358-0 YIN MT, 1984, PHYS REV B, V30, P1773, DOI 10.1103/PhysRevB.30.1773 NORTHRUP JE, 1983, PHYS REV A, V28, P1945, DOI 10.1103/PhysRevA.28.1945 NORTHRUP JE, 1983, CHEM PHYS LETT, V102, P440, DOI 10.1016/0009-2614(83)87441-7 ROBERTSON J, 1983, PHILOS MAG B, V47, pL33 BACHELET GB, 1982, PHYS REV B, V26, P4199, DOI 10.1103/PhysRevB.26.4199 YIN MT, 1982, PHYS REV B, V26, P3259, DOI 10.1103/PhysRevB.26.3259 YIN MT, 1982, PHYS REV B, V26, P5668, DOI 10.1103/PhysRevB.26.5668 HARRISON WA, 1981, PHYS REV B, V24, P5835, DOI 10.1103/PhysRevB.24.5835 MATTHEISS LF, 1981, PHYS REV B, V23, P5384, DOI 10.1103/PhysRevB.23.5384 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 LOUIE SG, 1980, PHYS REV B, V22, P1933, DOI 10.1103/PhysRevB.22.1933 PAPACONSTANTOPOULOS DA, 1980, PHYS REV B, V22, P2903, DOI 10.1103/PhysRevB.22.2903 CHADI DJ, 1979, J VAC SCI TECHNOL, V16, P1290, DOI 10.1116/1.570143 CHADI DJ, 1979, PHYS REV B, V19, P2074, DOI 10.1103/PhysRevB.19.2074 FROYEN S, 1979, PHYS REV B, V20, P2420, DOI 10.1103/PhysRevB.20.2420 CHADI DJ, 1977, PHYS REV B, V16, P790, DOI 10.1103/PhysRevB.16.790 PANDEY KC, 1976, PHYS REV B, V13, P750, DOI 10.1103/PhysRevB.13.750 CHADI DJ, 1975, PHYS STATUS SOLIDI B, V68, P405, DOI 10.1002/pssb.2220680140 CHATILLON C, 1975, CR ACAD SCI C CHIM, V280, P1505 NILSSON G, 1971, PHYS REV B, V3, P364, DOI 10.1103/PhysRevB.3.364 KANT A, 1966, J CHEM PHYS, V44, P2450, DOI 10.1063/1.1727063 KANT A, 1966, J CHEM PHYS, V45, P822, DOI 10.1063/1.1727688 DOLLING G, 1963, INELASTIC SCATTERING, V2, P249 JAMIESON JC, 1963, SCIENCE, V139, P762, DOI 10.1126/science.139.3556.762 SLATER JC, 1954, PHYS REV, V94, P1498, DOI 10.1103/PhysRev.94.1498 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340 Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 BISWAS R, COMMUNICATION PAPACONSTANTOPO.DA, COMMUNICATIONMERCER, JL CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Abstract:

The structural and electronic properties of hydrogen in yttrium are studied using the pseudopotential method within the local-density-functional approximation (LDA). Different concentration regions are considered for the alpha and beta phases. The binding energies associated with different interstitial sites are evaluated as well as the diffusion energy barrier and local vibrational modes. It is found that the occupation of the tetrahedral site is energetically more favorable than that of the octahedral site in the alpha phase. The calculated vibrational frequency is in excellent agreement with the value observed in neutron scattering experiments. Possibility of pairing is also examined from the consideration of energetics.

Notes:

ISI Document Delivery No.: NB576Times Cited: 1Cited Reference Count: 11Cited References: WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 KOUDOU C, 1990, PHYS REV LETT, V64, P1474, DOI 10.1103/PhysRevLett.64.1474 MIN BJ, 1989, PHYS REV B, V40, P7532, DOI 10.1103/PhysRevB.40.7532 LIU F, 1989, PHYS REV LETT, V63, P1396, DOI 10.1103/PhysRevLett.63.1396 PICKETT WE, 1989, COMPUT PHYS REP, V9, P115, DOI 10.1016/0167-7977(89)90002-6 BONNET JE, 1987, J LESS-COMMON MET, V129, P287, DOI 10.1016/0022-5088(87)90063-4 LICHTY L, 1987, J LESS-COMMON MET, V129, P31, DOI 10.1016/0022-5088(87)90030-0 WEAVER JH, 1985, PHYS REV B, V32, P3562, DOI 10.1103/PhysRevB.32.3562 KATAMIAN D, 1981, PHYS REV B, V23, P624 MANSMANN M, 1964, J PHYS-PARIS, V25, P454, DOI 10.1051/jphys:01964002505045400WANG, Y CHOU, MY3rd International Symposium on Metal-Hydrogen Systems: Fundamentals and ApplicationsJUN 08-12, 1992UPPSALA, SWEDENR OLDENBOURG VERLAGMUNICH 80Part 1-2


1992

Abstract:

We present a method to calculate the full phonon spectrum using the local-density approximation and Hellmann-Feynman forces. By a limited number of supercell calculations of the planar force constants, the interatomic force constant matrices are determined. One can then construct the dynamical matrix for any arbitrary wave vector in the Brillouin zone. We describe in detail the procedure for elements in the diamond structure and derive the phonon dispersion curves for Si. The anharmonic effects can also be studied by the present method.

Notes:

ISI Document Delivery No.: JX245Times Cited: 91Cited Reference Count: 25Cited References: MOLINARI E, 1992, PHYS REV B, V45, P4280, DOI 10.1103/PhysRevB.45.4280 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 BARONI S, 1990, PHYS REV LETT, V65, P84, DOI 10.1103/PhysRevLett.65.84 FASCOLINO A, 1990, PHYS REV B, V41, P8302 MAZUR A, 1989, PHYS REV B, V39, P5261, DOI 10.1103/PhysRevB.39.5261 SRIVASTAVA GP, 1988, J PHYS C SOLID STATE, V21, P5087, DOI 10.1088/0022-3719/21/29/007 BARONI S, 1987, PHYS REV LETT, V58, P1861, DOI 10.1103/PhysRevLett.58.1861 DEVREESE JT, 1985, ELECTRONIC STRUCTURE KUNC K, 1985, PHYS REV B, V32, P2010, DOI 10.1103/PhysRevB.32.2010 BRUESCH P, 1982, PHONON THEORY EXPT KUNC K, 1982, PHYS REV LETT, V8, P406 YIN MT, 1982, PHYS REV B, V25, P4317, DOI 10.1103/PhysRevB.25.4317 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 YIN MT, 1980, PHYS REV LETT, V45, P1004, DOI 10.1103/PhysRevLett.45.1004 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 ASHCROFT NW, 1976, SOLID STATE PHYS, P421 SHAM LJ, 1974, DYNAMICAL PROPERTIES, P301 SINHA SK, 1973, CRC CRIT R SOLID ST, V3, P273 NILSSON G, 1972, PHYS REV B, V6, P3777, DOI 10.1103/PhysRevB.6.3777 SLATER JC, 1972, J CHEM PHYS, V57, P2389, DOI 10.1063/1.1678599 DOLLING G, 1963, INELASTIC SCATTERING, V2, P37 HERMAN F, 1959, J PHYS CHEM SOLIDS, V8, P405, DOI 10.1016/0022-3697(59)90376-2 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340 QUONG AA, UNPUBWEI, SQ CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1991

Abstract:

The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a "soft" pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30-40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4p orbital included as a valence state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.

Notes:

ISI Document Delivery No.: GP268Times Cited: 12Cited Reference Count: 22Cited References: LAASONEN K, 1991, PHYS REV B, V43, P6796, DOI 10.1103/PhysRevB.43.6796 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 RAPPE AM, 1990, PHYS REV B, V41, P1227, DOI 10.1103/PhysRevB.41.1227 MIN BJ, 1989, PHYS REV B, V40, P7532, DOI 10.1103/PhysRevB.40.7532 PICKETT WE, 1989, COMPUT PHYS REP, V9, P115, DOI 10.1016/0167-7977(89)90002-6 LU ZW, 1987, PHYS REV B, V36, P7335, DOI 10.1103/PhysRevB.36.7335 KANG MH, 1987, PHYS REV B, V35, P5457, DOI 10.1103/PhysRevB.35.5457 CHAN CT, 1986, PHYS REV B, V33, P2455, DOI 10.1103/PhysRevB.33.2455 CHOU MY, 1983, PHYS REV B, V28, P4179, DOI 10.1103/PhysRevB.28.4179 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 BACHELET GB, 1982, PHYS REV B, V25, P2103, DOI 10.1103/PhysRevB.25.2103 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 KLEINMAN L, 1980, PHYS REV B, V21, P2630, DOI 10.1103/PhysRevB.21.2630 LOUIE SG, 1979, PHYS REV B, V19, P1774, DOI 10.1103/PhysRevB.19.1774 BEAUDRY BJ, 1978, HDB PHYSICS CHEM RAR CARTER WJ, 1975, J PHYS CHEM SOLIDS, V36, P741, DOI 10.1016/0022-3697(75)90097-9 HEDIN L, 1971, J PHYS PART C SOLID, V4, P2064, DOI 10.1088/0022-3719/4/14/022 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 GSCHNEIDNER KA, 1964, SOLID STATE PHYS, V16, P292 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 Wigner E, 1934, PHYS REV, V46, P1002, DOI

Abstract:

We have performed tight-binding calculations on a model of an amorphous silicon sample generated previously by a molecular-dynamics simulation employing the Stillinger-Weber potential. The sample consists of 588 atoms and contains a high density of floating-bond defects. Two tight-binding calculations are presented, one using the widely accepted Chadi parameters, which include only nearest-neighbor interactions, and the other using the parameters recently proposed by Allen, Broughton, and McMahan (ABM) [Phys. Rev. B 34, 859 (1986)] for a nonorthogonal basis set. Comparison of the densities of states shows similar behavior in the valence band, but the electron density near a defect is less localized with the ABM parameters. It is also found that the projected density of states on the fivefold-coordinated atoms is very close to that on the fourfold-coordinated atoms, while the projected density of states on the threefold-coordinated atoms is distinctly different and has more states in the gap.

Notes:

ISI Document Delivery No.: FC704Times Cited: 17Cited Reference Count: 23Cited References: BISWAS R, 1989, PHYS REV LETT, V63, P1491, DOI 10.1103/PhysRevLett.63.1491 LUEDTKE WD, 1989, PHYS REV B, V40, P1164, DOI 10.1103/PhysRevB.40.1164 STATHIS JH, 1989, PHYS REV B, V40, P1232, DOI 10.1103/PhysRevB.40.1232 MARTINMORENO L, 1989, PHYS REV B, V39, P3445, DOI 10.1103/PhysRevB.39.3445 FEDDERS PA, 1989, PHYS REV B, V39, P1134, DOI 10.1103/PhysRevB.39.1134 KELIRES PC, 1988, PHYS REV LETT, V61, P562, DOI 10.1103/PhysRevLett.61.562 FEDDERS PA, 1988, PHYS REV B, V37, P8506, DOI 10.1103/PhysRevB.37.8506 STUTZMANN M, 1988, PHYS REV LETT, V60, P1682, DOI 10.1103/PhysRevLett.60.1682 STATHIS JH, 1988, PHYS REV B, V37, P6579, DOI 10.1103/PhysRevB.37.6579 LUEDTKE WD, 1988, PHYS REV B, V37, P4656, DOI 10.1103/PhysRevB.37.4656 BISWAS R, 1987, PHYS REV B, V36, P7437, DOI 10.1103/PhysRevB.36.7437 KLUGE MD, 1987, PHYS REV B, V36, P4234, DOI 10.1103/PhysRevB.36.4234 PANTELIDES ST, 1987, PHYS REV B, V36, P3479, DOI 10.1103/PhysRevB.36.3479 BROUGHTON JQ, 1987, PHYS REV B, V35, P9120, DOI 10.1103/PhysRevB.35.9120 PANTELIDES ST, 1987, PHYS REV LETT, V58, P1344, DOI 10.1103/PhysRevLett.58.1344 FEDDERS PA, 1987, PHYS REV LETT, V58, P1156, DOI 10.1103/PhysRevLett.58.1156 PANTELIDES ST, 1986, PHYS REV LETT, V57, P2979, DOI 10.1103/PhysRevLett.57.2979 ALLEN PB, 1986, PHYS REV B, V34, P859, DOI 10.1103/PhysRevB.34.859 BIEGELSEN DK, 1986, PHYS REV B, V33, P3006, DOI 10.1103/PhysRevB.33.3006 JACKSON WB, 1985, J NON-CRYST SOLIDS, V77-8, P281, DOI 10.1016/0022-3093(85)90657-X STILLINGER FH, 1985, PHYS REV B, V31, P5262, DOI 10.1103/PhysRevB.31.5262 CHADI DJ, 1979, J VAC SCI TECHNOL, V16, P1290, DOI 10.1116/1.570143 SLATER JC, 1954, PHYS REV, V94, P1498, DOI 10.1103/PhysRev.94.1498MERCER, JL CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

1990

Abstract:

n/a

Notes:

ISI Document Delivery No.: CU251Times Cited: 10Cited Reference Count: 49Cited References: TRUONG TN, 1989, SURF SCI, V214, P523, DOI 10.1016/0039-6028(89)90186-6 CHOU MY, 1989, PHYS REV B, V39, P5623, DOI 10.1103/PhysRevB.39.5623 HAUG K, 1989, J CHEM PHYS, V90, P540, DOI 10.1063/1.456505 RICE BM, 1988, J CHEM PHYS, V88, P7221, DOI 10.1063/1.454374 TRUONG TN, 1988, J CHEM PHYS, V88, P6611, DOI 10.1063/1.454449 WAHNSTROM G, 1988, J CHEM PHYS, V88, P2478 BRAND JL, 1988, SURF SCI, V194, P457, DOI 10.1016/0039-6028(88)90864-3 WAHNSTROM G, 1988, J PHYS CHEM-US, V92, P3241 LINDROOS M, 1987, SURF SCI, V192, P421 TRUONG TN, 1987, J PHYS CHEM-US, V91, P6229, DOI 10.1021/j100308a032 MAK CH, 1987, SURF SCI, V191, P108, DOI 10.1016/S0039-6028(87)81051-8 CHOU MY, 1987, PHYS REV LETT, V59, P1737, DOI 10.1103/PhysRevLett.59.1737 MAK CH, 1987, SURF SCI, V188, P312, DOI 10.1016/S0039-6028(87)80160-7 MAK CH, 1987, J CHEM PHYS, V87, P2340, DOI 10.1063/1.453114 MAK CH, 1987, CHEM PHYS LETT, V135, P381, DOI 10.1016/0009-2614(87)85176-X CHOU MY, 1987, PHYS REV B, V35, P2124, DOI 10.1103/PhysRevB.35.2124 LINDROOS M, 1987, SURF SCI, V180, P237, DOI 10.1016/0039-6028(87)90046-X VALONE SM, 1986, J CHEM PHYS, V85, P7480, DOI 10.1063/1.451337 CHELIKOWSKY JR, 1986, PHYS REV B, V34, P6656, DOI 10.1103/PhysRevB.34.6656 FEULNER P, 1986, SURF SCI, V173, pL576, DOI 10.1016/0039-6028(86)90098-1 MAK CH, 1986, J CHEM PHYS, V85, P1676, DOI 10.1063/1.451209 CHAN CT, 1986, PHYS REV B, V33, P2455, DOI 10.1103/PhysRevB.33.2455 LAUDERDALE JG, 1986, J CHEM PHYS, V84, P1843, DOI 10.1063/1.450431 LAUDERDALE JG, 1985, SURF SCI, V164, P558, DOI 10.1016/0039-6028(85)90766-6 FEULNER P, 1985, SURF SCI, V154, P465, DOI 10.1016/0039-6028(85)90045-7 HOFMANN P, 1985, SURF SCI, V152, P382, DOI 10.1016/0039-6028(85)90168-2 HOLZWARTH NAW, 1985, SOLID STATE COMMUN, V53, P171, DOI 10.1016/0038-1098(85)90119-X VALONE SM, 1985, SURF SCI, V155, P687, DOI 10.1016/0039-6028(85)90022-6 YATES JT, 1985, SURF SCI, V160, P37, DOI 10.1016/0039-6028(85)91024-6 CONRAD H, 1984, J CHEM PHYS, V81, P6371, DOI 10.1063/1.447547 BARTEAU MA, 1983, SURF SCI, V133, P443, DOI 10.1016/0039-6028(83)90012-2 GARRETT BC, 1983, J PHYS CHEM-US, V87, P4553, DOI 10.1021/j100245a601 GARRETT BC, 1983, J PHYS CHEM-US, V87, P4554, DOI 10.1021/j100245a603 GOMER R, 1983, VACUUM, V33, P537, DOI 10.1016/0042-207X(83)90047-7 DIFOGGIO R, 1982, PHYS REV B, V25, P3490, DOI 10.1103/PhysRevB.25.3490 FEIBELMAN PJ, 1982, PHYS REV B, V26, P5347, DOI 10.1103/PhysRevB.26.5347 SKODJE RT, 1981, J PHYS CHEM-US, V85, P3019, DOI 10.1021/j150621a001 GARRETT BC, 1980, J PHYS CHEM-US, V84, P1730, DOI 10.1021/j100450a013 GARRETT BC, 1980, J CHEM PHYS, V72, P3460, DOI 10.1063/1.439608 SHIMIZU H, 1980, J CATAL, V61, P412, DOI 10.1016/0021-9517(80)90388-7 TRUHLAR DG, 1980, ACCOUNTS CHEM RES, V13, P440, DOI 10.1021/ar50156a002 GARRETT BC, 1979, J PHYS CHEM-US, V83, P1052, DOI 10.1021/j100471a031 GARRETT BC, 1979, J PHYS CHEM-US, V83, P1079, DOI 10.1021/j100471a032 HAMANN DR, 1979, PHYS REV LETT, V43, P1494, DOI 10.1103/PhysRevLett.43.1494 KECK JC, 1967, ADV CHEM PHYS, V13, P85, DOI 10.1002/9780470140154.ch5 KOHN W, 1965, PHYS REV A, V140, P113 HOHENBERG P, 1964, PHYS REV B, V136, P864 STORCH HH, 1951, FISCHERTROPSCH RELAT Wigner E, 1932, Z PHYS CHEM B-CHEM E, V19, P203TRUONG, TN TRUHLAR, DG CHELIKOWSKY, JR CHOU, MYAMER CHEMICAL SOCWASHINGTON